Documentation Verification Report

NatInt

📁 Source: Mathlib/RingTheory/Ideal/NatInt.lean

Statistics

MetricCount
Definitions0
TheoremsisPrime_int_iff, isPrime_nat_iff, map_comap_natCastRingHom_int, coe_maximalIdeal, maximalIdeal_eq_span_two_three, mem_maximalIdeal_iff, one_mem_closure_iff, one_mem_span_iff, instIsLocalRingNat, ringKrullDim_nat
10
Total10

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime_int_iff 📖mathematicalIsPrime
Int.instSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Nat.Prime
span
Set
Set.instSingletonSet
isPrime_iff_of_isPrincipalIdealRing_of_noZeroDivisors
EuclideanDomain.to_principal_ideal_domain
IsDomain.to_noZeroDivisors
Int.instIsDomain
Int.instNontrivial
Int.prime_iff_natAbs_prime
Int.span_natAbs
Nat.prime_iff_prime_int
isPrime_nat_iff 📖mathematicalIsPrime
Nat.instSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
Nat.instCommSemiring
instIsLocalRingNat
Nat.Prime
span
Set
Set.instSingletonSet
instIsLocalRingNat
isPrime_bot
Nat.instNontrivial
IsDomain.to_noZeroDivisors
Nat.instIsDomain
IsMaximal.isPrime
IsLocalRing.maximalIdeal.isMaximal
span_singleton_prime
Nat.Prime.ne_zero
Nat.prime_iff
LE.le.antisymm
IsLocalRing.le_maximalIdeal
IsPrime.ne_top
SetLike.not_le_iff_exists
instIsConcreteLE
le_bot_iff
Nat.find_spec
one_notMem
Nat.prime_iff_not_exists_mul_eq
mul_ne_zero_iff
IsPrime.mem_or_mem
Nat.find_min
SetLike.exists_of_lt
LE.le.lt_of_ne
span_singleton_le_iff_mem
Mathlib.Tactic.Push.not_and_eq
eq_or_ne
zero_mem
Nat.mem_maximalIdeal_iff
Nat.exists_add_mul_eq_of_gcd_dvd_of_mul_pred_le
Nat.Prime.coprime_iff_not_dvd
Iff.not
mem_span_singleton
Unique.instSubsingleton
LT.lt.le
IsPrime.mem_of_pow_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
mul_mem_left
map_comap_natCastRingHom_int 📖mathematicalmap
RingHom
Nat.instNonAssocSemiring
Semiring.toNonAssocSemiring
Int.instSemiring
Nat.instSemiring
RingHom.instFunLike
Nat.castRingHom
comap
RingHom.instRingHomClass
LE.le.antisymm
RingHom.instRingHomClass
map_comap_le
mul_mem_left
mem_map_of_mem
mem_comap

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
coe_maximalIdeal 📖mathematicalSetLike.coe
Ideal
CommSemiring.toSemiring
instCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
instIsLocalRingNat
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Set.ext
instIsLocalRingNat
Unique.instSubsingleton
maximalIdeal_eq_span_two_three 📖mathematicalIsLocalRing.maximalIdeal
instCommSemiring
instIsLocalRingNat
Ideal.span
CommSemiring.toSemiring
Set
Set.instInsert
Set.instSingletonSet
le_antisymm
instIsLocalRingNat
Ne.lt_or_gt
mem_maximalIdeal_iff
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Ideal.mem_span_pair
exists_add_mul_eq_of_gcd_dvd_of_mul_pred_le
Unique.instSubsingleton
Ideal.span_le
Set.pair_subset
instCharZero
instAtLeastTwoHAddOfNat
mem_maximalIdeal_iff 📖mathematicalIdeal
CommSemiring.toSemiring
instCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
instIsLocalRingNat
instIsLocalRingNat
Unique.instSubsingleton
one_mem_closure_iff 📖mathematicalAddSubmonoid
AddMonoid.toAddZeroClass
instAddMonoid
SetLike.instMembership
AddSubmonoid.instSetLike
AddSubmonoid.closure
Set
Set.instMembership
Submodule.span_nat_eq_addSubmonoidClosure
one_mem_span_iff
one_mem_span_iff 📖mathematicalIdeal
instSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
Set
Set.instMembership
SetLike.mem_coe
not_iff_not
instIsLocalRingNat
instIsConcreteLE

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLocalRingNat 📖mathematicalIsLocalRing
Nat.instSemiring
Nat.instNontrivial
Unique.instSubsingleton
ringKrullDim_nat 📖mathematicalringKrullDim
Nat.instCommSemiring
WithBot
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
le_antisymm
Nat.instAtLeastTwoHAddOfNat
iSup_le
le_of_not_gt
ENat.coe_lt_coe
WithBot.coe_lt_coe
three_ne_zero
LE.le.trans_lt
bot_le
RelSeries.step
instIsLocalRingNat
Ideal.isPrime_nat_iff
PrimeSpectrum.isPrime
LT.lt.ne'
LE.le.not_gt
IsLocalRing.le_maximalIdeal_of_isPrime
Eq.trans_lt
LT.lt.trans
Irreducible.not_isUnit
DvdNotUnit.isUnit_of_irreducible_right
Ideal.span_singleton_lt_span_singleton
Nat.instIsDomain
LT.lt.trans_eq
le_iSup_of_le
Ideal.span_singleton_prime
two_ne_zero
Nat.prime_iff
Nat.prime_two
Ideal.IsMaximal.isPrime
IsLocalRing.maximalIdeal.isMaximal
Fintype.complete
bot_lt_iff_ne_bot
Iff.not
Ideal.span_singleton_eq_bot
Nat.maximalIdeal_eq_span_two_three
SetLike.lt_iff_le_and_exists
instIsConcreteLE
Ideal.span_mono
Ideal.subset_span
Ideal.mem_span_singleton
le_rfl

---

← Back to Index