Documentation Verification Report

Nonunits

πŸ“ Source: Mathlib/RingTheory/Ideal/Nonunits.lean

Statistics

MetricCount
Definitionsnonunits
1
Theoremsinv_mem_of_isUnit, isUnit_iff, isUnit_iff_and, isUnit_iff_of_ne_zero, mem_nonunits_iff, mem_nonunits_iff_of_ne_zero, mem_nonunits_iff_or, coe_subset_nonunits, exists_max_ideal_of_mem_nonunits, map_mem_nonunits_iff, mem_nonunits_iff, mul_mem_nonunits_left, mul_mem_nonunits_right, one_notMem_nonunits, zero_mem_nonunits
15
Total16

Submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
inv_mem_of_isUnit πŸ“–mathematicalIsUnit
SetLike.instMembership
SubmonoidClass.toMonoid
DivInvMonoid.toMonoid
DivisionMonoid.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
β€”map_inv
MonoidHom.instMonoidHomClass
isUnit_iff πŸ“–mathematicalβ€”IsUnit
SetLike.instMembership
SubmonoidClass.toMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv_mem_of_isUnit
mul_inv_cancel
inv_mul_cancel
isUnit_iff_and πŸ“–mathematicalβ€”IsUnit
SetLike.instMembership
SubmonoidClass.toMonoid
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”IsUnit.ne_zero
GroupWithZero.toNontrivial
IsUnit.map
MonoidHom.instMonoidHomClass
inv_mem_of_isUnit
mul_inv_cancelβ‚€
inv_mul_cancelβ‚€
isUnit_iff_of_ne_zero πŸ“–mathematicalβ€”IsUnit
SetLike.instMembership
SubmonoidClass.toMonoid
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”isUnit_iff_and
mem_nonunits_iff πŸ“–mathematicalβ€”SetLike.instMembership
Set
Set.instMembership
nonunits
SubmonoidClass.toMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mem_nonunits_iff
isUnit_iff
mem_nonunits_iff_of_ne_zero πŸ“–mathematicalβ€”SetLike.instMembership
Set
Set.instMembership
nonunits
SubmonoidClass.toMonoid
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”mem_nonunits_iff_or
mem_nonunits_iff_or πŸ“–mathematicalβ€”SetLike.instMembership
Set
Set.instMembership
nonunits
SubmonoidClass.toMonoid
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”mem_nonunits_iff
isUnit_iff_and
not_and_or

(root)

Definitions

NameCategoryTheorems
nonunits πŸ“–CompOp
15 mathmath: smoothSheafCommRing.nonunits_stalk, mem_nonunits_iff, IsLocalRing.mem_maximalIdeal, Submonoid.mem_nonunits_iff, nonunits.isClosed, nonunits.subset_compl_ball, coe_subset_nonunits, Submonoid.mem_nonunits_iff_or, map_mem_nonunits_iff, Ring.KrullDimLE.isNilpotent_iff_mem_nonunits, Submonoid.mem_nonunits_iff_of_ne_zero, PadicInt.p_nonunit, zero_mem_nonunits, one_notMem_nonunits, PadicInt.mem_nonunits

Theorems

NameKindAssumesProvesValidatesDepends On
coe_subset_nonunits πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
nonunits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Ideal.eq_top_of_isUnit_mem
exists_max_ideal_of_mem_nonunits πŸ“–mathematicalSet
Set.instMembership
nonunits
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Ideal.IsMaximal
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.span_singleton_eq_top
Ideal.exists_le_maximal
Ideal.subset_span
Set.mem_singleton
map_mem_nonunits_iff πŸ“–mathematicalβ€”Set
Set.instMembership
nonunits
DFunLike.coe
β€”IsUnit.map
IsUnit.of_map
mem_nonunits_iff πŸ“–mathematicalβ€”Set
Set.instMembership
nonunits
IsUnit
β€”β€”
mul_mem_nonunits_left πŸ“–mathematicalSet
Set.instMembership
nonunits
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid
mul_mem_nonunits_right πŸ“–mathematicalSet
Set.instMembership
nonunits
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”isUnit_of_mul_isUnit_right
instIsDedekindFiniteMonoid
one_notMem_nonunits πŸ“–mathematicalβ€”Set
Set.instMembership
nonunits
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”isUnit_one
zero_mem_nonunits πŸ“–mathematicalβ€”Set
Set.instMembership
nonunits
MonoidWithZero.toMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”isUnit_zero_iff

---

← Back to Index