Documentation Verification Report

AbsNorm

πŸ“ Source: Mathlib/RingTheory/Ideal/Norm/AbsNorm.lean

Statistics

MetricCount
DefinitionsabsNorm, cardQuot
2
TheoremsabsNorm_apply, absNorm_bot, absNorm_dvd_absNorm_of_le, absNorm_dvd_norm_of_mem, absNorm_eq_one_iff, absNorm_eq_zero_iff, absNorm_mem, absNorm_ne_zero_iff, absNorm_ne_zero_iff_mem_nonZeroDivisors, absNorm_ne_zero_of_nonZeroDivisors, absNorm_pos_iff_mem_nonZeroDivisors, absNorm_pos_of_nonZeroDivisors, absNorm_span_insert, absNorm_span_singleton, absNorm_top, card_norm_le_eq_card_norm_le_add_one, exists_mul_add_mem_pow_succ, finite_setOf_absNorm_eq, finite_setOf_absNorm_le, finite_setOf_absNorm_leβ‚€, irreducible_of_irreducible_absNorm, isPrime_of_irreducible_absNorm, mem_prime_of_mul_mem_pow, mul_add_mem_pow_succ_inj, mul_add_mem_pow_succ_unique, natAbs_det_basis_change, natAbs_det_equiv, norm_dvd_iff, prime_of_irreducible_absNorm_span, span_singleton_absNorm, span_singleton_absNorm_le, ideal_span_absNorm_eq_self, cardQuot_apply, cardQuot_bot, cardQuot_eq_one_iff, cardQuot_top, cardQuot_mul, cardQuot_mul_of_coprime, cardQuot_pow_of_prime
39
Total41

Ideal

Definitions

NameCategoryTheorems
absNorm πŸ“–CompOp
55 mathmath: finite_setOf_absNorm_leβ‚€, absNorm_span_insert, NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm_nnreal, NumberField.mixedEmbedding.fundamentalCone.integerSetEquivNorm_apply_fst, NumberField.FinitePlace.norm_def', finite_setOf_absNorm_eq, FractionalIdeal.absNorm_eq', absNorm_pos_iff_mem_nonZeroDivisors, NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_dvd_norm_le, absNorm_eq_pow_inertiaDeg', NumberField.mixedEmbedding.fundamentalCone.card_isPrincipal_norm_eq_mul_torsion, absNorm_eq_pow_inertiaDeg_of_liesOver, absNorm_mem, NumberField.natAbs_discr_eq_absNorm_differentIdeal_mul_natAbs_discr_pow, relNorm_int, absNorm_dvd_absNorm_of_le, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, Int.absNorm_under_mem, NumberField.RingOfIntegers.HeightOneSpectrum.adicAbv_def, FractionalIdeal.absNorm_eq, IsPrimitiveRoot.not_coprime_norm_of_mk_eq_one, NumberField.FinitePlace.norm_def_int, card_norm_le_eq_card_norm_le_add_one, NumberField.absNorm_differentIdeal, absNorm_top, absNorm_apply, absNorm_pos_of_nonZeroDivisors, Int.absNorm_under_dvd_absNorm, NumberField.exists_ideal_in_class_of_norm_le, NumberField.Ideal.tendsto_norm_le_div_atTop, natAbs_det_equiv, absNorm_eq_one_iff, finite_setOf_absNorm_le, NumberField.toNNReal_valued_eq_adicAbv, FractionalIdeal.absNorm_div_norm_eq_absNorm_div_norm, absNorm_eq_pow_inertiaDeg, absNorm_eq_zero_iff, IsCyclotomicExtension.Rat.absNorm_span_zeta_sub_one, absNorm_bot, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, Int.ideal_span_absNorm_eq_self, IsDedekindDomain.HeightOneSpectrum.embedding_mul_absNorm, absNorm_relNorm, Int.absNorm_under_eq_sInf, absNorm_span_singleton, FractionalIdeal.coeIdeal_absNorm, absNorm_algebraMap, Int.cast_mem_ideal_iff, NumberField.RingOfIntegers.HeightOneSpectrum.one_lt_absNorm, span_singleton_absNorm_le, natAbs_det_basis_change, ringChar_quot, Int.liesOver_span_absNorm, Nat.absNorm_under_prime, absNorm_dvd_norm_of_mem

Theorems

NameKindAssumesProvesValidatesDepends On
absNorm_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Submodule.cardQuot
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
β€”β€”
absNorm_bot πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”zero_eq_bot
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
absNorm_dvd_absNorm_of_le πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”map_dvd
IsScalarTower.right
Submodule.mul_toAddSubmonoid
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
dvd_iff_le
absNorm_dvd_norm_of_mem πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
Ring.toSemiring
CommRing.toRing
Int.instCommRing
MonoidHom.instFunLike
Algebra.norm
Ring.toIntAlgebra
β€”absNorm_span_singleton
absNorm_dvd_absNorm_of_le
span_singleton_le_iff_mem
absNorm_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”absNorm_apply
Submodule.cardQuot_eq_one_iff
absNorm_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”le_bot_iff
mem_bot
Algebra.norm_eq_zero_iff
Int.instIsDomain
IsDedekindDomain.toIsDomain
absNorm_span_singleton
zero_dvd_iff
absNorm_dvd_absNorm_of_le
span_singleton_le_iff_mem
absNorm_bot
absNorm_mem πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”absNorm_apply
Submodule.cardQuot.eq_1
instIsTwoSided_1
Quotient.eq_zero_iff_mem
map_natCast
RingHom.instRingHomClass
Quotient.index_eq_zero
absNorm_ne_zero_iff πŸ“–mathematicalβ€”Finite
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
β€”Nat.finite_of_card_ne_zero
AddSubgroup.FiniteIndex.index_ne_zero
AddSubgroup.finiteIndex_of_finite_quotient
absNorm_ne_zero_iff_mem_nonZeroDivisors πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsDedekindDomain.toIsDomain
instNontrivial
absNorm_ne_zero_of_nonZeroDivisors πŸ“–β€”β€”β€”β€”absNorm_ne_zero_iff_mem_nonZeroDivisors
SetLike.coe_mem
absNorm_pos_iff_mem_nonZeroDivisors πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”absNorm_ne_zero_iff_mem_nonZeroDivisors
absNorm_pos_of_nonZeroDivisors πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”absNorm_pos_iff_mem_nonZeroDivisors
SetLike.coe_mem
absNorm_span_insert πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
span
Set
Set.instInsert
GCDMonoid.gcd
Nat.instCommMonoidWithZero
instGCDMonoidNat
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
Ring.toSemiring
CommRing.toRing
Int.instCommRing
MonoidHom.instFunLike
Algebra.norm
Ring.toIntAlgebra
β€”dvd_gcd_iff
absNorm_dvd_absNorm_of_le
span_mono
Set.subset_insert
trans
instIsTransDvd
Set.singleton_subset_iff
Set.mem_insert
absNorm_span_singleton
dvd_refl
absNorm_span_singleton πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
span
Set
Set.instSingletonSet
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
Ring.toSemiring
CommRing.toRing
Int.instCommRing
MonoidHom.instFunLike
Algebra.norm
Ring.toIntAlgebra
β€”smulCommClass_self
IsScalarTower.left
Algebra.norm_apply
span_zero
absNorm_bot
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
LinearMap.det_zero''
RingHomCompTriple.ids
LinearMap.CompatibleSMul.intModule
RingHomInvPair.ids
IsScalarTower.right
AddEquivClass.instAddMonoidHomClass
SemilinearEquivClass.toAddEquivClass
LinearEquiv.instSemilinearEquivClass
IsDedekindDomain.toIsDomain
natAbs_det_equiv
Module.Basis.ext
Module.Basis.equiv_apply
basisSpanSingleton_apply
absNorm_top πŸ“–mathematicalβ€”DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”one_eq_top
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
card_norm_le_eq_card_norm_le_add_one πŸ“–mathematicalβ€”Nat.card
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”Set.Finite.subset
finite_setOf_absNorm_le
Nat.card_congr
Pi.disjoint_iff
Prop.disjoint_iff
Nat.card_sum
AddLeftCancelSemigroup.toIsLeftCancelAdd
absNorm_ne_zero_iff_mem_nonZeroDivisors
absNorm_eq_zero_iff
Nat.card_unique
Unique.instSubsingleton
exists_mul_add_mem_pow_succ πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
β€”IsScalarTower.right
eq_prime_pow_of_succ_lt_of_le
lt_of_le_of_ne
le_sup_right
Mathlib.Tactic.Contrapose.contraposeβ‚„
Submodule.mem_sup
mem_span_singleton_self
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
add_zero
sup_le
span_le
Set.singleton_subset_iff
LT.lt.le
pow_succ_lt_pow
mul_comm
mem_span_singleton_sup
finite_setOf_absNorm_eq πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
setOf
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”instIsTwoSided_1
Set.Finite.of_finite_image
absNorm_ne_zero_iff
absNorm_span_singleton
Int.instIsDomain
IsDedekindDomain.toIsDomain
ne_of_gt
Set.Finite.subset
Set.finite_univ
Set.instFinite
Set.subset_univ
Function.Injective.injOn
SetLike.coe_injective
RingHom.instRingHomClass
span_singleton_absNorm_le
finite_setOf_absNorm_le πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
setOf
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”Set.ext
Set.iUnion_congr_Prop
Nat.instCanonicallyOrderedAdd
Set.Finite.biUnion
Set.finite_Icc
finite_setOf_absNorm_eq
finite_setOf_absNorm_leβ‚€ πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
setOf
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”Set.Finite.subset
finite_setOf_absNorm_le
Finite.of_equiv
irreducible_of_irreducible_absNorm πŸ“–mathematicalIrreducible
Nat.instMonoid
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”irreducible_iff
Irreducible.not_isUnit
Irreducible.isUnit_or_isUnit
map_mul
IsScalarTower.right
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
isPrime_of_irreducible_absNorm πŸ“–mathematicalIrreducible
Nat.instMonoid
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
IsPrimeβ€”isPrime_of_prime
UniqueFactorizationMonoid.irreducible_iff_prime
uniqueFactorizationMonoid
irreducible_of_irreducible_absNorm
mem_prime_of_mul_mem_pow πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”IsScalarTower.right
prime_pow_succ_dvd_mul
isCancelMulZero
prime_of_isPrime
IsScalarTower.left
pow_succ
instIsTwoSided_1
mul_add_mem_pow_succ_inj πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
β€”IsScalarTower.right
mul_mem_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
add_mem
sub_mem
mul_add_mem_pow_succ_unique πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
β€”β€”IsScalarTower.right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
add_mem
sub_mem
mem_prime_of_mul_mem_pow
natAbs_det_basis_change πŸ“–mathematicalβ€”DFunLike.coe
AlternatingMap
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
AlternatingMap.instFunLike
Module.Basis.det
Ideal
SetLike.instMembership
Submodule.setLike
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.Basis
Int.instSemiring
Submodule.addCommMonoid
Submodule.addCommGroup
Module.Basis.instFunLike
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”Submodule.natAbs_det_basis_change
IsScalarTower.right
natAbs_det_equiv πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
LinearMap.det
LinearMap.comp
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.addCommGroup
RingHomCompTriple.ids
LinearMap.restrictScalars
Int.instSemiring
Submodule.module
LinearMap.CompatibleSMul.intModule
Submodule.subtype
AddMonoidHom.toIntLinearMap
AddMonoidHomClass.toAddMonoidHom
Ideal
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
EquivLike.toFunLike
AddEquivClass.instAddMonoidHomClass
MonoidWithZeroHom
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”RingHomCompTriple.ids
LinearMap.CompatibleSMul.intModule
AddEquivClass.instAddMonoidHomClass
one_ne_zero
NeZero.one
EquivLike.injective
Unique.instSubsingleton
Submodule.natAbs_det_equiv
IsScalarTower.right
norm_dvd_iff πŸ“–mathematicalPrime
CommSemiring.toCommMonoidWithZero
Int.instCommSemiring
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
MonoidHom.instFunLike
Algebra.norm
Ring.toIntAlgebra
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”mem_span_singleton
eq_intCast
RingHom.instRingHomClass
mem_comap
span_singleton_absNorm
absNorm_span_singleton
Int.prime_iff_natAbs_prime
prime_of_irreducible_absNorm_span πŸ“–mathematicalIrreducible
Nat.instMonoid
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
span
Set
Set.instSingletonSet
Prime
CommSemiring.toCommMonoidWithZero
β€”span_singleton_prime
isPrime_of_irreducible_absNorm
span_singleton_absNorm πŸ“–mathematicalNat.Prime
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
span
Int.instSemiring
Set
Set.instSingletonSet
comap
RingHom
Int.instCommSemiring
RingHom.instFunLike
algebraMap
Ring.toIntAlgebra
CommRing.toRing
RingHom.instRingHomClass
β€”span_singleton_prime
Nat.Prime.ne_zero
Nat.prime_iff_prime_int
IsMaximal.eq_of_le
RingHom.instRingHomClass
IsPrime.isMaximal
IsDedekindDomainDvr.ring_dimensionLEOne
Int.instIsDomain
IsDedekindDomain.isDedekindDomainDvr
IsPrincipalIdealRing.isDedekindDomain
EuclideanDomain.to_principal_ideal_domain
span_singleton_eq_bot
IsPrime.ne_top
IsPrime.comap
isPrime_of_irreducible_absNorm
Nat.irreducible_iff_nat_prime
span_singleton_le_iff_mem
mem_comap
algebraMap_int_eq
map_natCast
absNorm_mem
span_singleton_absNorm_le πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
absNorm
β€”absNorm_mem

Int

Theorems

NameKindAssumesProvesValidatesDepends On
ideal_span_absNorm_eq_self πŸ“–mathematicalβ€”Ideal.span
instSemiring
Set
Set.instSingletonSet
DFunLike.coe
MonoidWithZeroHom
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Ideal.absNorm
instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
euclideanDomain
Module.free_of_finite_type_torsion_free'
Ring.toAddCommGroup
CommRing.toRing
AddCommGroup.toIntModule
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
instAddGroup
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
β€”instNontrivial
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Module.free_of_finite_type_torsion_free'
AddMonoid.FG.to_moduleFinite_int
AddMonoid.fg_of_addGroup_fg
AddGroup.instFGInt
instIsTorsionFreeIntOfIsAddTorsionFree
instIsAddTorsionFree
IsPrincipalIdealRing.principal
Ideal.absNorm_span_singleton
Algebra.norm_self
Nat.cast_natAbs
cast_abs
instIsStrictOrderedRing
Ideal.span_singleton_abs

Submodule

Definitions

NameCategoryTheorems
cardQuot πŸ“–CompOp
8 mathmath: cardQuot_mul, cardQuot_pow_of_prime, Ideal.absNorm_apply, cardQuot_eq_one_iff, cardQuot_bot, cardQuot_top, cardQuot_mul_of_coprime, cardQuot_apply

Theorems

NameKindAssumesProvesValidatesDepends On
cardQuot_apply πŸ“–mathematicalβ€”cardQuot
Nat.card
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
hasQuotient
β€”β€”
cardQuot_bot πŸ“–mathematicalβ€”cardQuot
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instBot
β€”AddSubgroup.index_bot
Nat.card_eq_zero_of_infinite
cardQuot_eq_one_iff πŸ“–mathematicalβ€”cardQuot
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTop
β€”AddSubgroup.index_eq_one
cardQuot_top πŸ“–mathematicalβ€”cardQuot
Top.top
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTop
β€”AddSubgroup.index_top

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cardQuot_mul πŸ“–mathematicalβ€”Submodule.cardQuot
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Submodule.mul
IsScalarTower.right
Algebra.id
β€”UniqueFactorizationMonoid.multiplicative_of_coprime
Ideal.uniqueFactorizationMonoid
Submodule.cardQuot_bot
Infinite.of_surjective
Finsupp.infinite_of_right
Int.infinite
Module.Free.instNonemptyChooseBasisIndexOfNontrivial
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
RingHomInvPair.ids
Equiv.surjective
Ideal.isUnit_iff
Ideal.mul_top
Ideal.instIsTwoSided_1
Submodule.cardQuot_top
mul_one
Ideal.isPrime_of_prime
cardQuot_pow_of_prime
Prime.ne_zero
cardQuot_mul_of_coprime
Ideal.isCoprime_iff_sup_eq
IsScalarTower.right
Ideal.dvd_iff_le
le_sup_left
le_sup_right
cardQuot_mul_of_coprime πŸ“–mathematicalIsCoprime
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
IdemCommSemiring.toCommSemiring
Ideal.instIdemCommSemiring
Submodule.cardQuot
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Submodule.mul
IsScalarTower.right
Algebra.id
β€”IsScalarTower.right
Submodule.cardQuot_apply
Nat.card_congr
Nat.card_prod
cardQuot_pow_of_prime πŸ“–mathematicalβ€”Submodule.cardQuot
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Monoid.toNatPow
Nat.instMonoid
β€”IsScalarTower.right
pow_zero
Ideal.one_eq_top
Submodule.cardQuot_top
Ideal.pow_succ_lt_pow
RingHomSurjective.ids
Subtype.prop
Submodule.mkQ_apply
Submodule.Quotient.eq
Quotient.inductionOn'
Submodule.mem_map
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
Ideal.mul_add_mem_pow_succ_unique
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
add_zero
Ideal.exists_mul_add_mem_pow_succ
SetLike.exists_of_lt
instIsConcreteLE
pow_succ'
Submodule.cardQuot_apply
Submodule.card_quotient_mul_card_quotient
LT.lt.le
Nat.card_congr

---

← Back to Index