Documentation Verification Report

Oka

πŸ“ Source: Mathlib/RingTheory/Ideal/Oka.lean

Statistics

MetricCount
DefinitionsIsOka
1
Theoremsforall_of_forall_prime, forall_of_forall_prime', isPrime_of_maximal_not, oka, top
5
Total6

Ideal

Definitions

NameCategoryTheorems
IsOka πŸ“–CompData
2 mathmath: isOka_fg, isOka_isPrincipal

Ideal.IsOka

Theorems

NameKindAssumesProvesValidatesDepends On
forall_of_forall_prime πŸ“–β€”Ideal.IsOka
Maximal
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”Maximal.prop
isPrime_of_maximal_not
forall_of_forall_prime' πŸ“–β€”Ideal.IsOka
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
β€”β€”forall_of_forall_prime
zorn_le_nonemptyβ‚€
le_sSup
isPrime_of_maximal_not πŸ“–mathematicalIdeal.IsOka
Maximal
Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.IsPrimeβ€”Maximal.prop
top
Mathlib.Tactic.Push.not_forall_eq
of_not_not
Maximal.not_prop_of_gt
Submodule.lt_sup_iff_notMem
lt_of_le_of_ne
Ideal.le_colon
Ideal.instIsTwoSided
Ideal.mem_colon_span_singleton
mul_comm
oka
oka πŸ“–β€”Ideal.IsOka
Ideal
CommSemiring.toSemiring
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Ideal.span
Set
Set.instSingletonSet
Submodule.colon
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.coe
Submodule.setLike
β€”β€”β€”
top πŸ“–mathematicalIdeal.IsOkaTop.top
Ideal
CommSemiring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”

---

← Back to Index