Documentation Verification Report

Over

πŸ“ Source: Mathlib/RingTheory/Ideal/Over.lean

Statistics

MetricCount
DefinitionsLiesOver, algEquivOfEqComap, algEquivOfEqMap, algebraOfLiesOver, algebraQuotientMapQuotient, stabilizerHom, primesOver, mk, under
9
Theoremsunder, of_eq_comap, of_eq_map_equiv, over, smul, tower_bot, trans, algEquivOfEqComap_apply, algEquivOfEqMap_apply, algebraMap_mk_of_liesOver, algebraMap_quotient_map_quotient, instFaithfulSMul, instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver, isScalarTower_of_liesOver, ker_stabilizerHom, map_ker_stabilizer_subtype, mk_smul_mk_quotient_map_quotient, nontrivial_of_liesOver_of_isPrime, nontrivial_of_liesOver_of_ne_top, stabilizerHom_apply, tower_quotient_map_quotient, bot_liesOver_bot, comap_eq_of_scalar_tower_quotient, comap_liesOver, disjoint_primeCompl_of_liesOver, eq_top_iff_of_liesOver, instLiesOverBotOfIsPrime, liesOver_iff, map_equiv_liesOver, map_under_le_under_map, mem_of_liesOver, ne_bot_of_liesOver_of_ne_bot, ne_bot_of_mem_primesOver, ne_top_iff_of_liesOver, over_def, over_under, isPrime, liesOver, top_liesOver_top, under_bot, under_def, under_liesOver_of_liesOver, under_map_eq_map_under, under_smul, under_top, under_under
46
Total55

Ideal

Definitions

NameCategoryTheorems
LiesOver πŸ“–CompData
35 mathmath: IsLocalization.AtPrime.liesOver_map_of_liesOver, LiesOver.of_eq_comap, instLiesOverFiberOfIsPrime, LiesOver.smul, liesOver_iff_dvd_map, Localization.localRingHom_injective_of_primesOver_eq_singleton, exists_maximal_ideal_liesOver_of_isIntegral, IsLocalRing.ResidueField.instLiesOverMaximalIdeal, LiesOver.of_eq_map_equiv, exists_ideal_le_liesOver_of_le, liesOver_iff, exists_ideal_liesOver_maximal_of_isIntegral, IsLocalization.AtPrime.liesOver_comap_of_liesOver, NumberField.Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, exists_ideal_lt_liesOver_of_lt, IsCyclotomicExtension.Rat.liesOver_span_zeta_sub_one, comap_liesOver, top_liesOver_top, instLiesOverResidueFieldBotIdeal, primesOver.liesOver, Factors.liesOver, exists_isPrime_liesOver_of_faithfullyFlat, over_under, instLiesOverBotOfIsPrime, LiesOver.trans, PrimeSpectrum.instLiesOverAsIdealComapAlgebraMap, map_equiv_liesOver, Algebra.HasGoingDown.exists_ideal_le_liesOver_of_lt, under_liesOver_of_liesOver, IsLocalization.AtPrime.liesOver_maximalIdeal, Valuation.HasExtension.instLiesOverSubtypeMemValuationSubringValuationSubringMaximalIdeal, bot_liesOver_bot, Int.liesOver_span_absNorm, LiesOver.tower_bot, IsLocalization.liesOver_of_isPrime_of_disjoint
primesOver πŸ“–CompOp
43 mathmath: NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, comap_fiberIsoOfBijectiveResidueField_apply, IsDedekindDomain.HeightOneSpectrum.equivPrimesOver_apply, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply', IsCyclotomicExtension.Rat.ncard_primesOver_of_prime_pow, coe_smul_primesOver_mk_eq_map_galRestrict, ncard_primesOver_mul_ncard_primesOver, coe_primesOverFinset, one_le_primesOver_ncard, IsDedekindDomain.primesOverEquivPrimesOver_inertiagDeg_eq, primesOver_bot, Algebra.QuasiFinite.iff_finite_primesOver, IsDedekindDomain.primesOverEquivPrimesOver_apply, Algebra.IsInvariant.orbit_eq_primesOver, ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn, IsDedekindDomain.primesOverEquivPrimesOver_ramificationIdx_eq, primesOver_finite, nonempty_primesOver, isPretransitive_of_isGalois, coe_smul_primesOver_mk, IsCyclotomicExtension.Rat.ncard_primesOver_of_prime, isPretransitive_of_isGaloisGroup, mem_primesOverFinset_iff, primesOver.liesOver, IsLocalization.AtPrime.mem_primesOver_of_isPrime, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, primesOver.isPrime, mem_primesOver_iff_mem_normalizedFactors, coe_smul_primesOver_eq_map_galRestrict, map_algebraMap_eq_finset_prod_pow, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, IsDedekindDomain.primesOverEquivPrimesOver_symm_apply, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, Algebra.QuasiFinite.finite_primesOver, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, ncard_primesOver_mul_card_inertia_mul_finrank, primesOver.isMaximal, comap_fiberIsoOfBijectiveResidueField_symm, coe_smul_primesOver, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, IsLocalRing.primesOver_eq
under πŸ“–CompOp
38 mathmath: Polynomial.not_ker_le_map_C_of_surjective_of_quasiFiniteAt, Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, under_bot, under_top, ramificationIdx_eq_one_of_isUnramifiedAt, AlgHom.IsArithFrobAt.mk_apply, map_under_le_under_map, under_smul, under_under, Polynomial.map_under_lt_comap_of_weaklyQuasiFiniteAt, under_map_of_isLocalizationAtPrime, liesOver_iff, AlgHom.IsArithFrobAt.apply_of_pow_eq_one, AlgHom.IsArithFrobAt.restrict_injective, Int.absNorm_under_mem, Algebra.isUnramifiedAt_iff_of_isDedekindDomain, under_def, Polynomial.not_ker_le_map_C_of_surjective_of_weaklyQuasiFiniteAt, Int.absNorm_under_dvd_absNorm, over_under, AlgHom.IsArithFrobAt.card_pos, Algebra.weaklyQuasiFiniteAt_iff, LiesOver.over, Polynomial.map_under_lt_comap_of_quasiFiniteAt, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, over_def, AlgHom.IsArithFrobAt.restrict_mk, under_map_eq_map_under, IsPrime.under, Int.absNorm_under_eq_sInf, under_liesOver_of_liesOver, Int.cast_mem_ideal_iff, ringChar_quot, Int.liesOver_span_absNorm, IsMaximal.under, Nat.absNorm_under_prime, AlgHom.IsArithFrobAt.restrict_apply, AlgHom.IsArithFrobAt.finite_quotient

Theorems

NameKindAssumesProvesValidatesDepends On
bot_liesOver_bot πŸ“–mathematicalβ€”LiesOver
CommRing.toCommSemiring
Ring.toSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CommSemiring.toSemiring
β€”under_bot
comap_eq_of_scalar_tower_quotient πŸ“–mathematicalHasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Quotient.commSemiring
Quotient.semiring
RingHom.instFunLike
algebraMap
comap
RingHom.instRingHomClass
β€”IsScalarTower.right
ext
RingHom.instRingHomClass
mem_comap
instIsTwoSided_1
Quotient.eq_zero_iff_mem
Quotient.mk_algebraMap
IsScalarTower.algebraMap_apply
Quotient.algebraMap_eq
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
comap_liesOver πŸ“–mathematicalβ€”LiesOver
comap
AlgHomClass.toRingHomClass
β€”LiesOver.of_eq_comap
AlgHomClass.toRingHomClass
disjoint_primeCompl_of_liesOver πŸ“–mathematicalβ€”Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.instSetLike
Algebra.algebraMapSubmonoid
primeCompl
CommSemiring.toSemiring
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHom.instRingHomClass
coe_comap
SetLike.ext'_iff
under_def
liesOver_iff
one_notMem
Submonoid.map.congr_simp
Set.subset_compl_comm
Set.instReflSubset
eq_top_iff_of_liesOver πŸ“–mathematicalβ€”Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CommSemiring.toSemiring
β€”over_def
comap_eq_top_iff
instLiesOverBotOfIsPrime πŸ“–mathematicalβ€”LiesOver
Semifield.toCommSemiring
Field.toSemifield
Bot.bot
Ideal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsSimpleOrder.eq_bot_or_eq_top
isSimpleOrder
IsPrime.ne_top'
IsPrime.under
liesOver_iff πŸ“–mathematicalβ€”LiesOver
under
β€”β€”
map_equiv_liesOver πŸ“–mathematicalβ€”LiesOver
map
EquivLike.toFunLike
β€”LiesOver.of_eq_map_equiv
map_under_le_under_map πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
algebraMap
under
β€”le_comap_of_map_le
map_map
IsScalarTower.algebraMap_eq
RingHom.instRingHomClass
map_le_iff_le_comap
comap_comap
comap_mono
le_comap_map
mem_of_liesOver πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
β€”over_def
ne_bot_of_liesOver_of_ne_bot πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
over_def
under_bot
ne_bot_of_mem_primesOver πŸ“–β€”Ideal
Ring.toSemiring
Set
Set.instMembership
primesOver
CommRing.toCommSemiring
β€”β€”ne_bot_of_liesOver_of_ne_bot
ne_top_iff_of_liesOver πŸ“–β€”β€”β€”β€”Iff.ne
eq_top_iff_of_liesOver
over_def πŸ“–mathematicalβ€”underβ€”LiesOver.over
over_under πŸ“–mathematicalβ€”LiesOver
under
β€”β€”
top_liesOver_top πŸ“–mathematicalβ€”LiesOver
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CommSemiring.toSemiring
β€”under_top
under_bot πŸ“–mathematicalβ€”under
CommRing.toCommSemiring
Ring.toSemiring
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CommSemiring.toSemiring
β€”comap_bot_of_injective
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
under_def πŸ“–mathematicalβ€”under
comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”β€”
under_liesOver_of_liesOver πŸ“–mathematicalβ€”LiesOver
CommSemiring.toSemiring
under
β€”LiesOver.tower_bot
over_under
under_map_eq_map_under πŸ“–mathematicalβ€”under
map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”RingHom.instRingHomClass
IsCoatom.le_iff_eq
isMaximal_def
comap_ne_top
map_under_le_under_map
under_smul πŸ“–mathematicalβ€”under
Ideal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
pointwiseDistribMulAction
β€”ext
mem_comap
mem_pointwise_smul_iff_inv_smul_mem
smul_algebraMap
under_top πŸ“–mathematicalβ€”under
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CommSemiring.toSemiring
β€”comap_top
under_under πŸ“–mathematicalβ€”under
CommSemiring.toSemiring
β€”RingHom.instRingHomClass
comap.congr_simp

Ideal.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
under πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
Ideal.under
β€”comap
RingHom.instRingHomClass

Ideal.LiesOver

Theorems

NameKindAssumesProvesValidatesDepends On
of_eq_comap πŸ“–mathematicalIdeal.comap
AlgHomClass.toRingHomClass
Ideal.LiesOverβ€”AlgHomClass.toRingHomClass
Ideal.over_def
AlgHom.algHomClass
AlgHom.comp_algebraMap
of_eq_map_equiv πŸ“–mathematicalIdeal.map
EquivLike.toFunLike
Ideal.LiesOverβ€”of_eq_comap
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquivClass.toRingEquivClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Ideal.comap_symm
over πŸ“–mathematicalβ€”Ideal.underβ€”β€”
smul πŸ“–mathematicalβ€”Ideal.LiesOver
Ideal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Ideal.pointwiseDistribMulAction
β€”over
Ideal.under_smul
tower_bot πŸ“–mathematicalβ€”Ideal.LiesOver
CommSemiring.toSemiring
β€”Ideal.over_def
Ideal.under_under
trans πŸ“–mathematicalβ€”Ideal.LiesOverβ€”Ideal.over_def
Ideal.under_under

Ideal.Quotient

Definitions

NameCategoryTheorems
algEquivOfEqComap πŸ“–CompOp
1 mathmath: algEquivOfEqComap_apply
algEquivOfEqMap πŸ“–CompOp
1 mathmath: algEquivOfEqMap_apply
algebraOfLiesOver πŸ“–CompOp
25 mathmath: exists_algHom_fixedPoint_quotient_under, map_ker_stabilizer_subtype, Ideal.inertiaDeg_algebraMap, algEquivOfEqMap_apply, instIsSeparableQuotientIdealOfResidueField, instFaithfulSMul, algebra_finiteType_of_liesOver, stabilizerHom_surjective, normal, stabilizerHom_surjective_of_profinite, stabilizerHom_apply, isNoetherian_of_liesOver, exists_algEquiv_fixedPoint_quotient_under, module_finite_of_liesOver, stabilizerQuotientInertiaEquiv_mk, algEquivOfEqComap_apply, IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply, isScalarTower_of_liesOver, ker_stabilizerHom, algebra_isIntegral_of_liesOver, Ideal.card_stabilizer_eq_card_inertia_mul_finrank, finite_of_isInvariant, Ideal.ncard_primesOver_mul_card_inertia_mul_finrank, Algebra.isSeparable_residueField_iff, algebraMap_mk_of_liesOver
algebraQuotientMapQuotient πŸ“–CompOp
12 mathmath: IsLocalRing.finrank_quotient_map, QuotientMapQuotient.isNoetherian, tower_quotient_map_quotient, IsLocalRing.basisQuotient_repr, algebraMap_quotient_map_quotient, Ideal.finrank_quotient_map, Algebra.trace_quotient_mk, IsLocalRing.quotient_span_eq_top_iff_span_eq_top, IsLocalRing.basisQuotient_apply, trace_quotient_eq_trace_localization_quotient, Algebra.trace_quotient_eq_of_isDedekindDomain, mk_smul_mk_quotient_map_quotient
stabilizerHom πŸ“–CompOp
6 mathmath: map_ker_stabilizer_subtype, stabilizerHom_surjective, stabilizerHom_surjective_of_profinite, stabilizerHom_apply, stabilizerQuotientInertiaEquiv_mk, ker_stabilizerHom

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivOfEqComap_apply πŸ“–mathematicalIdeal.comap
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
commSemiring
semiring
algebraOfLiesOver
AlgEquiv.instFunLike
algEquivOfEqComap
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
Ideal.instIsTwoSided_1
algEquivOfEqMap_apply πŸ“–mathematicalIdeal.map
CommSemiring.toSemiring
CommRing.toCommSemiring
EquivLike.toFunLike
DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
commSemiring
semiring
algebraOfLiesOver
AlgEquiv.instFunLike
algEquivOfEqMap
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”Ideal.instIsTwoSided_1
algebraMap_mk_of_liesOver πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Semiring.toNonAssocSemiring
commSemiring
semiring
RingHom.instFunLike
algebraMap
algebraOfLiesOver
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
ring
Ideal.instIsTwoSided_1
β€”Ideal.instIsTwoSided_1
algebraMap_quotient_map_quotient πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
commSemiring
semiring
algebraQuotientMapQuotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
ring
Ideal.instIsTwoSided_1
β€”Ideal.instIsTwoSided_1
instFaithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Algebra.toSMul
commSemiring
semiring
algebraOfLiesOver
β€”faithfulSMul_iff_algebraMap_injective
Ideal.instIsTwoSided_1
eq
Ideal.mem_of_liesOver
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver πŸ“–mathematicalβ€”Ideal.IsPrime
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
semiring
ring
Ideal.instIsTwoSided_1
β€”Ideal.isPrime_map_quotientMk_of_isPrime
Ideal.instIsTwoSided_1
RingHom.instRingHomClass
Ideal.map_le_iff_le_comap
Ideal.LiesOver.over
le_refl
isScalarTower_of_liesOver πŸ“–mathematicalβ€”IsScalarTower
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Submodule.Quotient.instSMul'
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
IsScalarTower.right
commSemiring
semiring
algebraOfLiesOver
β€”IsScalarTower.of_algebraMap_eq'
IsScalarTower.algebraMap_eq
ker_stabilizerHom πŸ“–mathematicalβ€”MonoidHom.ker
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
Ideal.pointwiseDistribMulAction
Subgroup.toGroup
AlgEquiv
HasQuotient.Quotient
Ideal.instHasQuotient_1
commSemiring
semiring
algebraOfLiesOver
Monoid.toMulOneClass
AlgEquiv.aut
stabilizerHom
Subgroup.subgroupOf
Ideal.inertia
CommRing.toRing
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
β€”Subgroup.ext
Subgroup.instSubgroupClass
Ideal.instIsTwoSided_1
Function.Surjective.forall
mk_surjective
map_ker_stabilizer_subtype πŸ“–mathematicalβ€”Subgroup.map
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
Ideal.pointwiseDistribMulAction
Subgroup.toGroup
Subgroup.subtype
MonoidHom.ker
AlgEquiv
HasQuotient.Quotient
Ideal.instHasQuotient_1
commSemiring
semiring
algebraOfLiesOver
Monoid.toMulOneClass
AlgEquiv.aut
stabilizerHom
Ideal.inertia
CommRing.toRing
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
β€”Subgroup.instSubgroupClass
ker_stabilizerHom
AddSubgroup.inertia_map_subtype
inf_of_le_left
mk_smul_mk_quotient_map_quotient πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Algebra.toSMul
commSemiring
semiring
algebraQuotientMapQuotient
DFunLike.coe
ring
Ideal.instIsTwoSided_1
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Algebra.smul_def
Ideal.instIsTwoSided_1
nontrivial_of_liesOver_of_isPrime πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
β€”nontrivial_of_liesOver_of_ne_top
Ideal.IsPrime.ne_top
nontrivial_of_liesOver_of_ne_top πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
β€”nontrivial_iff
Ideal.ne_top_iff_of_liesOver
stabilizerHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
commSemiring
semiring
algebraOfLiesOver
AlgEquiv.instFunLike
MonoidHom
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulAction.stabilizer
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
Submodule.instAddCommMonoidWithOne
Semiring.toModule
Ideal.pointwiseDistribMulAction
MulOneClass.toMulOne
Monoid.toMulOneClass
Subgroup.toGroup
AlgEquiv.aut
MonoidHom.instFunLike
stabilizerHom
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Subgroup.instDistribMulActionSubtypeMem
MulSemiringAction.toDistribMulAction
β€”Ideal.instIsTwoSided_1
tower_quotient_map_quotient πŸ“–mathematicalβ€”IsScalarTower
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Submodule.Quotient.instSMul
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
commSemiring
semiring
algebraQuotientMapQuotient
Submodule.Quotient.instSMul'
IsScalarTower.right
β€”IsScalarTower.of_algebraMap_eq
Ideal.instIsTwoSided_1
algebraMap_eq
algebraMap_quotient_map_quotient
mk_algebraMap

Ideal.primesOver

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime πŸ“–mathematicalβ€”Ideal.IsPrime
Ideal
Set
Set.instMembership
Ideal.primesOver
β€”β€”
liesOver πŸ“–mathematicalβ€”Ideal.LiesOver
Ideal
Set
Set.instMembership
Ideal.primesOver
β€”β€”

---

← Back to Index