Documentation Verification Report

Prod

πŸ“ Source: Mathlib/RingTheory/Ideal/Prod.lean

Statistics

MetricCount
DefinitionsidealProdEquiv, prod
2
Theoremscoe_prod, idealProdEquiv_symm_apply, ideal_prod_eq, ideal_prod_prime, ideal_prod_prime_aux, isPrime_ideal_prod_top, isPrime_ideal_prod_top', isPrime_of_isPrime_prod_top, isPrime_of_isPrime_prod_top', map_fst_prod, map_prodComm_prod, map_snd_prod, mem_prod, prod_bot_bot, prod_eq_bot_iff, prod_eq_top_iff, prod_inj, prod_mono, prod_mono_left, prod_mono_right, prod_top_top, span_prod, span_prod_le, instIsPrincipalIdealRingProd
24
Total26

Ideal

Definitions

NameCategoryTheorems
idealProdEquiv πŸ“–CompOp
1 mathmath: idealProdEquiv_symm_apply
prod πŸ“–CompOp
22 mathmath: isPrime_ideal_prod_top, span_prod, map_fst_prod, PrimeSpectrum.primeSpectrumProd_symm_inr_asIdeal, ideal_prod_prime, prod_inj, prod_bot_bot, isPrime_ideal_prod_top', prod_mono_left, idealProdEquiv_symm_apply, ideal_prod_eq, map_snd_prod, prod_mono_right, prod_mono, prod_eq_top_iff, prod_eq_bot_iff, coe_prod, prod_top_top, PrimeSpectrum.primeSpectrumProd_symm_inl_asIdeal, map_prodComm_prod, span_prod_le, mem_prod

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prod πŸ“–mathematicalβ€”SetLike.coe
Ideal
Prod.instSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
idealProdEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Ideal
Prod.instSemiring
Prod.instLE_mathlib
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instFunLikeOrderIso
OrderIso.symm
idealProdEquiv
prod
β€”β€”
ideal_prod_eq πŸ“–mathematicalβ€”prod
map
RingHom
Prod.instNonAssocSemiring
Semiring.toNonAssocSemiring
Prod.instSemiring
RingHom.instFunLike
RingHom.fst
RingHom.snd
β€”ext
mem_prod
mem_map_iff_of_surjective
RingHom.instRingHomClass
Prod.fst_surjective
Zero.instNonempty
Prod.snd_surjective
one_mul
MulZeroClass.zero_mul
add_zero
zero_add
add_mem
mul_mem_left
ideal_prod_prime πŸ“–mathematicalβ€”IsPrime
Prod.instSemiring
prod
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”ideal_prod_eq
ideal_prod_prime_aux
isPrime_of_isPrime_prod_top'
isPrime_of_isPrime_prod_top
isPrime_ideal_prod_top
isPrime_ideal_prod_top'
ideal_prod_prime_aux πŸ“–mathematicalβ€”Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Mathlib.Tactic.Contrapose.contrapose₁
mul_one
MulZeroClass.mul_zero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
isPrime_ideal_prod_top πŸ“–mathematicalβ€”IsPrime
Prod.instSemiring
prod
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsPrime.ne_top
IsPrime.mem_or_mem
isPrime_ideal_prod_top' πŸ“–mathematicalβ€”IsPrime
Prod.instSemiring
prod
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_prodComm_prod
map_isPrime_of_equiv
isPrime_ideal_prod_top
isPrime_of_isPrime_prod_top πŸ“–mathematicalβ€”IsPrimeβ€”Mathlib.Tactic.Contrapose.contrapose₃
prod_top_top
isPrime_iff
mul_one
mem_prod
IsPrime.mem_or_mem
isPrime_of_isPrime_prod_top' πŸ“–mathematicalβ€”IsPrimeβ€”isPrime_of_isPrime_prod_top
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_prodComm_prod
map_isPrime_of_equiv
map_fst_prod πŸ“–mathematicalβ€”map
RingHom
Prod.instNonAssocSemiring
Semiring.toNonAssocSemiring
Prod.instSemiring
RingHom.instFunLike
RingHom.fst
prod
β€”ext
mem_map_iff_of_surjective
RingHom.instRingHomClass
Prod.fst_surjective
Zero.instNonempty
zero_mem
map_prodComm_prod πŸ“–mathematicalβ€”map
RingHom
Prod.instNonAssocSemiring
Semiring.toNonAssocSemiring
Prod.instSemiring
RingHom.instFunLike
RingHomClass.toRingHom
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.prodComm
prod
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
ideal_prod_eq
map_map
RingEquiv.fst_comp_coe_prodComm
map_snd_prod
RingEquiv.snd_comp_coe_prodComm
map_fst_prod
map_snd_prod πŸ“–mathematicalβ€”map
RingHom
Prod.instNonAssocSemiring
Semiring.toNonAssocSemiring
Prod.instSemiring
RingHom.instFunLike
RingHom.snd
prod
β€”ext
mem_map_iff_of_surjective
RingHom.instRingHomClass
Prod.snd_surjective
Zero.instNonempty
zero_mem
mem_prod πŸ“–mathematicalβ€”Ideal
Prod.instSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
prod
β€”β€”
prod_bot_bot πŸ“–mathematicalβ€”prod
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prod.instSemiring
β€”SetLike.coe_injective
Set.singleton_prod_singleton
prod_eq_bot_iff πŸ“–mathematicalβ€”prod
Bot.bot
Ideal
Prod.instSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”prod_bot_bot
prod_eq_top_iff πŸ“–mathematicalβ€”prod
Top.top
Ideal
Prod.instSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”prod_top_top
prod_inj πŸ“–mathematicalβ€”prodβ€”OrderIso.injective
prod_mono πŸ“–mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prod.instSemiring
prod
β€”Set.prod_mono
prod_mono_left πŸ“–mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prod.instSemiring
prod
β€”Set.prod_mono_left
prod_mono_right πŸ“–mathematicalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prod.instSemiring
prod
β€”Set.prod_mono_right
prod_top_top πŸ“–mathematicalβ€”prod
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Prod.instSemiring
β€”ext
span_prod πŸ“–mathematicalSet.Nonemptyspan
Prod.instSemiring
SProd.sprod
Set
Set.instSProd
prod
β€”ideal_prod_eq
map_span
RingHom.instRingHomClass
Set.image_congr
Set.fst_image_prod
Set.snd_image_prod
Set.prod_empty
span_empty
prod_bot_bot
span_prod_le πŸ“–mathematicalβ€”Ideal
Prod.instSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
span
SProd.sprod
Set
Set.instSProd
prod
β€”ideal_prod_eq
map_span
RingHom.instRingHomClass
prod_mono
span_mono
Set.fst_image_prod_subset
Set.snd_image_prod_subset

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsPrincipalIdealRingProd πŸ“–mathematicalβ€”IsPrincipalIdealRing
Prod.instSemiring
β€”Ideal.ideal_prod_eq
IsPrincipalIdealRing.principal
Submodule.IsPrincipal.span_singleton_generator
Ideal.span.eq_1
Ideal.span_prod
Set.singleton_prod_singleton

---

← Back to Index