Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Ideal/Quotient/Basic.lean

Statistics

MetricCount
DefinitionsdivisionRing, groupWithZero, instUniqueQuotientTop, modulePi, piQuotEquiv
5
Theoremsof_finite_quot_finite_ideal, of_ideal_quotient, eq_zero_iff_dvd, exists_inv, isDomain, isDomain_iff_prime, isScalarTower_right, maximal_ideal_iff_isField_quotient, maximal_of_isField, mk_singleton_self, mk_span_range, noZeroDivisors, nontrivial, nontrivial_iff, smulCommClass, smulCommClass', subsingleton_iff, zero_eq_one_iff, zero_ne_one_iff, map_pi, univ_eq_iUnion_image_add, finite_iff_ideal_quotient
22
Total27

Finite

Theorems

NameKindAssumesProvesValidatesDepends On
of_finite_quot_finite_ideal πŸ“–mathematicalβ€”Finiteβ€”of_ideal_quotient
of_ideal_quotient πŸ“–mathematicalβ€”Finiteβ€”finite_iff_ideal_quotient

Ideal

Definitions

NameCategoryTheorems
modulePi πŸ“–CompOpβ€”
piQuotEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
map_pi πŸ“–mathematicalIdeal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
LinearMap
RingHom.id
Pi.addCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Pi.Function.module
LinearMap.instFunLike
β€”nonempty_fintype
pi_eq_sum_univ
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
Finset.sum_apply
Submodule.sum_mem
mul_mem_right
univ_eq_iUnion_image_add πŸ“–mathematicalβ€”Set.univ
Set.iUnion
HasQuotient.Quotient
Ideal
Ring.toSemiring
instHasQuotient
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
Quotient.out
Submodule.quotientRel
Ring.toAddCommGroup
Semiring.toModule
SetLike.coe
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”QuotientAddGroup.univ_eq_iUnion_vadd

Ideal.Quotient

Definitions

NameCategoryTheorems
divisionRing πŸ“–CompOpβ€”
groupWithZero πŸ“–CompOpβ€”
instUniqueQuotientTop πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_iff_dvd πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
Semiring.toNonAssocSemiring
ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Submodule.Quotient.instZeroQuotient
Ring.toAddCommGroup
Semiring.toModule
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
β€”Ideal.instIsTwoSided_1
eq_zero_iff_mem
Ideal.mem_span_singleton
exists_inv πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ring
one
β€”exists_right_inv_of_exists_left_inv
Ideal.IsMaximal.exists_inv
eq_zero_iff_mem
neg_sub
neg_mem_iff
AddSubgroupClass.toNegMemClass
Submodule.addSubgroupClass
eq_sub_iff_add_eq'
isDomain πŸ“–mathematicalβ€”IsDomain
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
ring
β€”nontrivial_iff
Ideal.IsPrime.ne_top'
NoZeroDivisors.to_isDomain
noZeroDivisors
isDomain_iff_prime πŸ“–mathematicalβ€”IsDomain
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
ring
Ideal.IsPrime
β€”zero_ne_one_iff
zero_ne_one
NeZero.one
Nontrivial.exists_pair_ne
IsDomain.toNontrivial
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
IsDomain.to_noZeroDivisors
RingHom.map_mul
isDomain
isScalarTower_right πŸ“–mathematicalβ€”IsScalarTower
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Submodule.Quotient.instSMul'
Ring.toAddCommGroup
Semiring.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ring
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”RingCon.isScalarTower_right
maximal_ideal_iff_isField_quotient πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
IsField
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
semiring
β€”Field.toIsField
maximal_of_isField
maximal_of_isField πŸ“–mathematicalIsField
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
semiring
Ideal.IsMaximalβ€”Ideal.isMaximal_iff
IsField.exists_pair_ne
Ideal.instIsTwoSided_1
eq
Ideal.mul_mem_left
mul_one
IsField.mul_inv_cancel
eq_zero_iff_mem
zero_add
sub_self
sub_add
Ideal.sub_mem
Ideal.mul_mem_right
mk_singleton_self πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
Semiring.toNonAssocSemiring
ring
RingHom.instFunLike
Submodule.Quotient.instZeroQuotient
Ring.toAddCommGroup
Semiring.toModule
β€”Submodule.Quotient.mk_eq_zero
Ideal.mem_span_singleton_self
mk_span_range πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Ideal.span
Set.range
Semiring.toNonAssocSemiring
ring
RingHom.instFunLike
Submodule.Quotient.instZeroQuotient
Ring.toAddCommGroup
Semiring.toModule
β€”eq_zero_iff_mem
Ideal.subset_span
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ring
Submodule.Quotient.instZeroQuotient
Ring.toAddCommGroup
Semiring.toModule
β€”Quotient.inductionOnβ‚‚'
Ideal.IsPrime.mem_or_mem
eq_zero_iff_mem
nontrivial πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
β€”nontrivial_iff
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
β€”Submodule.Quotient.nontrivial_iff
smulCommClass πŸ“–mathematicalβ€”SMulCommClass
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Submodule.Quotient.instSMul'
Ring.toAddCommGroup
Semiring.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ring
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”RingCon.smulCommClass
smulCommClass' πŸ“–mathematicalβ€”SMulCommClass
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ring
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submodule.Quotient.instSMul'
Ring.toAddCommGroup
Semiring.toModule
β€”RingCon.smulCommClass'
subsingleton_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Submodule.Quotient.subsingleton_iff
zero_eq_one_iff πŸ“–mathematicalβ€”HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Submodule.Quotient.instZeroQuotient
Ring.toAddCommGroup
Semiring.toModule
one
Top.top
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Submodule.Quotient.mk_eq_zero
Ideal.eq_top_iff_one
zero_ne_one_iff πŸ“–β€”β€”β€”β€”zero_eq_one_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
finite_iff_ideal_quotient πŸ“–mathematicalβ€”Finite
Ideal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HasQuotient.Quotient
Ideal.instHasQuotient
β€”finite_iff_addSubgroup_quotient

---

← Back to Index