Documentation Verification Report

Nilpotent

📁 Source: Mathlib/RingTheory/Ideal/Quotient/Nilpotent.lean

Statistics

MetricCount
Definitions0
Theoremsinduction_on, isRadical_iff_quotient_reduced, isUnit_quotient_mk_iff
3
Total3

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isRadical_iff_quotient_reduced 📖mathematicalIsRadical
CommRing.toCommSemiring
IsReduced
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
instHasQuotient_1
Submodule.Quotient.instZeroQuotient
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Quotient.semiring
instIsTwoSided_1
RingHom.instRingHomClass
mk_ker
RingHom.ker_isRadical_iff_reduced_of_surjective
Quotient.mk_surjective

Ideal.IsNilpotent

Theorems

NameKindAssumesProvesValidatesDepends On
induction_on 📖IsNilpotent
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsScalarTower.right
Ideal.instIsTwoSided_1
Nat.strong_induction_on
Ideal.zero_eq_bot
zero_pow
two_ne_zero
subsingleton_of_bot_eq_top
Ideal.one_eq_top
pow_zero
pow_one
IsScalarTower.left
Ideal.pow_le_self
pow_mul
eq_bot_iff
Ideal.pow_le_pow_right
Ideal.map_pow
RingHom.instRingHomClass
Ideal.map_quotient_self

IsNilpotent

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_quotient_mk_iff 📖mathematicalIsNilpotent
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.pointwiseZero
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
IsUnit
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ideal.Quotient.semiring
DFunLike.coe
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
IsScalarTower.right
Ideal.instIsTwoSided_1
Ideal.IsNilpotent.induction_on
Ideal.Quotient.mk_surjective
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsUnit.mul_val_inv
Ideal.mem_bot
Ideal.pow_mem_pow
Ideal.Quotient.eq
Nat.instAtLeastTwoHAddOfNat
sub_eq_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
IsUnit.map
sup_eq_right

---

← Back to Index