Documentation Verification Report

Basic

📁 Source: Mathlib/RingTheory/Int/Basic.lean

Statistics

MetricCount
DefinitionsinstDecidablePredIrreducible, instDecidablePredPrime
2
Theoremsdvd_mul, dvd_mul', dvd_pow, dvd_pow', eq_pow_of_mul_eq_pow_odd, eq_pow_of_mul_eq_pow_odd_left, eq_pow_of_mul_eq_pow_odd_right, exists_prime_and_dvd, gcd_ne_one_iff_gcd_mul_right_ne_one, isCoprime_iff_nat_coprime, natAbs_euclideanDomain_gcd, prime_iff_natAbs_prime, span_natAbs, sq_of_gcd_eq_one, sq_of_isCoprime, prime_two_or_dvd_of_dvd_two_mul_pow_self_two
16
Total18

Int

Definitions

NameCategoryTheorems
instDecidablePredIrreducible 📖CompOp
instDecidablePredPrime 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_pow_of_mul_eq_pow_odd 📖IsCoprime
instCommSemiring
Odd
Nat.instSemiring
Monoid.toNatPow
instMonoid
eq_pow_of_mul_eq_pow_odd_left
eq_pow_of_mul_eq_pow_odd_right
eq_pow_of_mul_eq_pow_odd_left 📖IsCoprime
instCommSemiring
Odd
Nat.instSemiring
Monoid.toNatPow
instMonoid
exists_associated_pow_of_mul_eq_pow'
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
instIsDomain
Associated.symm
Odd.neg_pow
associated_iff_natAbs
eq_pow_of_mul_eq_pow_odd_right 📖IsCoprime
instCommSemiring
Odd
Nat.instSemiring
Monoid.toNatPow
instMonoid
eq_pow_of_mul_eq_pow_odd_left
IsCoprime.symm
mul_comm
exists_prime_and_dvd 📖mathematicalPrime
CommSemiring.toCommMonoidWithZero
instCommSemiring
Nat.exists_prime_and_dvd
Nat.prime_iff_prime_int
natCast_dvd
gcd_ne_one_iff_gcd_mul_right_ne_one 📖
isCoprime_iff_nat_coprime 📖mathematicalIsCoprime
instCommSemiring
isCoprime_iff_gcd_eq_one
gcd_eq_natAbs
natAbs_euclideanDomain_gcd 📖mathematicalEuclideanDomain.gcd
euclideanDomain
EuclideanDomain.gcd_dvd_left
EuclideanDomain.gcd_dvd_right
EuclideanDomain.dvd_gcd
prime_iff_natAbs_prime 📖mathematicalPrime
CommSemiring.toCommMonoidWithZero
instCommSemiring
Nat.Prime
Associated.prime_iff
associated_natAbs
Nat.prime_iff_prime_int
span_natAbs 📖mathematicalIdeal.span
instSemiring
Set
Set.instSingletonSet
Ideal.span_singleton_eq_span_singleton
instIsDomain
Associated.symm
associated_natAbs
sq_of_gcd_eq_one 📖Monoid.toNatPow
instMonoid
coe_gcd
isUnit_one
exists_associated_pow_of_mul_eq_pow
units_eq_one_or
mul_one
mul_neg
sq_of_isCoprime 📖IsCoprime
instCommSemiring
Monoid.toNatPow
instMonoid
sq_of_gcd_eq_one
isCoprime_iff_gcd_eq_one

Int.Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_mul 📖Nat.PrimeNat.Prime.dvd_mul
Int.natCast_dvd
dvd_mul' 📖Nat.PrimeInt.natCast_dvd
dvd_mul
dvd_pow 📖Nat.Prime
Monoid.toNatPow
Int.instMonoid
Nat.Prime.dvd_of_dvd_pow
Int.natCast_dvd
dvd_pow' 📖Nat.Prime
Monoid.toNatPow
Int.instMonoid
Int.natCast_dvd
dvd_pow

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
prime_two_or_dvd_of_dvd_two_mul_pow_self_two 📖Nat.Prime
Monoid.toNatPow
Int.instMonoid
Int.Prime.dvd_mul
le_antisymm
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.Prime.two_le
Nat.Prime.dvd_mul
sq

---

← Back to Index