Documentation Verification Report

Ideal

πŸ“ Source: Mathlib/RingTheory/IntegralClosure/Algebra/Ideal.lean

Statistics

MetricCount
Definitions0
Theoremscoeff_mem_pow_of_mem_adjoin_C_mul_X, exists_monic_aeval_eq_zero_forall_mem_of_mem_map, exists_monic_aeval_eq_zero_forall_mem_pow_of_isIntegral, exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map
4
Total4

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_mem_pow_of_mem_adjoin_C_mul_X πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subalgebra
semiring
algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
X
Submodule.instPowNat
IsScalarTower.right
coeff
β€”Algebra.adjoin_induction
IsScalarTower.right
coeff_C_mul
coeff_X
mul_one
MulZeroClass.mul_zero
pow_one
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
coeff_C
pow_zero
Ideal.one_eq_top
coeff_add
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
coeff_mul
sum_mem
Ideal.mul_mem_mul
pow_add
exists_monic_aeval_eq_zero_forall_mem_of_mem_map πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
Monic
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
coeff
β€”IsScalarTower.right
exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map
Ne.lt_or_gt
Ideal.pow_le_self
coeff_eq_zero_of_natDegree_lt
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
exists_monic_aeval_eq_zero_forall_mem_pow_of_isIntegral πŸ“–mathematicalIsIntegral
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subalgebra
semiring
algebraOfAlgebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
setOf
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instMul
DFunLike.coe
RingHom
RingHom.instFunLike
C
X
Subalgebra.toCommRing
commRing
ring
CommRing.toRing
Subalgebra.toAlgebra
commSemiring
Ring.toSemiring
algebra
Monic
AlgHom
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Submodule.instPowNat
IsScalarTower.right
natDegree
coeff
β€”subsingleton_or_nontrivial
IsScalarTower.right
Monic.leadingCoeff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
Ideal.one_eq_top
natDegree_eq_of_le_of_coeff_ne_zero
natDegree_sum_le_of_forall_le
LE.le.trans
natDegree_C_mul_X_pow_le
Nat.instNoMaxOrder
finset_sum_coeff
Finset.sum_congr
coeff_C_mul
coeff_X_pow
mul_ite
mul_one
MulZeroClass.mul_zero
Finset.sum_ite_eq
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
tsub_self
coeff_one_zero
NeZero.one
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
aeval_C
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
aeval_X
mul_pow
mul_left_comm
RingHom.instRingHomClass
coeff_mul_X_pow'
mul_comm
coeff_map
evalβ‚‚_eq_sum_range
coeff_mem_pow_of_mem_adjoin_C_mul_X
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
Monic
DFunLike.coe
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Submodule.instPowNat
IsScalarTower.right
natDegree
coeff
β€”exists_monic_aeval_eq_zero_forall_mem_pow_of_isIntegral
Submodule.span_induction
Algebra.subset_adjoin
map_mul
map_C
map_X
isIntegral_algebraMap
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
add_mul
Distrib.rightDistribClass
IsIntegral.add
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_assoc
IsIntegral.mul
IsIntegral.tower_top
IsScalarTower.subalgebra'
instIsScalarTowerPolynomial
IsScalarTower.left
isScalarTower
IsScalarTower.right
IsIntegral.map
AlgHom.algHomClass
Algebra.IsIntegral.isIntegral

---

← Back to Index