Documentation Verification Report

IntegralRestrict

πŸ“ Source: Mathlib/RingTheory/IntegralClosure/IntegralRestrict.lean

Statistics

MetricCount
DefinitionsintNorm, intNormAux, intTrace, intTraceAux, galLift, galLiftEquiv, galRestrict, galRestrict', galRestrictHom, instFintypeAlgEquivOfIsDomainOfIsIntegrallyClosedOfFiniteOfIsTorsionFree
10
TheoremsalgebraMap_intNorm, algebraMap_intNorm_fractionRing, algebraMap_intNorm_of_isGalois, algebraMap_intTrace, algebraMap_intTrace_fractionRing, dvd_algebraMap_intNorm_self, intNorm_eq_norm, intNorm_eq_of_isLocalization, intNorm_eq_zero, intNorm_intNorm, intNorm_map_algEquiv, intNorm_ne_zero, intNorm_zero, intTrace_eq_of_isLocalization, intTrace_eq_trace, map_intNormAux, map_intTraceAux, algebraMap_galRestrict'_apply, algebraMap_galRestrictHom_apply, algebraMap_galRestrict_apply, coe_galRestrict_apply, galLiftEquiv_algebraMap_apply, galLiftEquiv_apply, galLiftEquiv_symm_apply, galLift_algebraMap_apply, galLift_comp, galLift_galRestrict', galLift_id, galRestrict'_comp, galRestrict'_galLift, galRestrict'_id, galRestrictHom_apply, galRestrictHom_symm_algebraMap_apply, galRestrictHom_symm_apply, galRestrict_apply, galRestrict_symm_algebraMap_apply, prod_galRestrict_eq_norm
37
Total47

Algebra

Definitions

NameCategoryTheorems
intNorm πŸ“–CompOp
16 mathmath: Ideal.intNorm_mem_spanNorm, Ideal.map_spanIntNorm, dvd_algebraMap_intNorm_self, algebraMap_intNorm, Ideal.relNorm_singleton, Ideal.map_relNorm, algebraMap_intNorm_fractionRing, intNorm_eq_of_isLocalization, intNorm_eq_norm, intNorm_zero, Ideal.spanNorm_singleton, algebraMap_intNorm_of_isGalois, Ideal.relNorm_apply, intNorm_map_algEquiv, intNorm_intNorm, intNorm_eq_zero
intNormAux πŸ“–CompOp
1 mathmath: map_intNormAux
intTrace πŸ“–CompOp
5 mathmath: intTrace_eq_of_isLocalization, trace_quotient_eq_of_isDedekindDomain, algebraMap_intTrace, algebraMap_intTrace_fractionRing, intTrace_eq_trace
intTraceAux πŸ“–CompOp
1 mathmath: map_intTraceAux

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_intNorm πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
intNorm
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
norm
β€”AlgEquiv.injective
AlgEquiv.commutes
intNorm.eq_1
map_intNormAux
IsIntegralClosure.isFractionRing_of_finite_extension
norm_eq_of_equiv_equiv
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsFractionRing.algEquiv_commutes
Localization.isLocalization
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
algebraMap_intNorm_fractionRing πŸ“–mathematicalβ€”DFunLike.coe
RingHom
FractionRing
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
OreLocalization.instSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
id
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
intNorm
Ring.toSemiring
OreLocalization.instRing
CommRing.toRing
OreLocalization.instCommRing
norm
FractionRing.liftAlgebra
FractionRing.field
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
β€”map_intNormAux
algebraMap_intNorm_of_isGalois πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
intNorm
IsIntegral.of_finite
CommRing.toRing
Finset.prod
AlgEquiv
CommRing.toCommMonoid
Finset.univ
instFintypeAlgEquivOfIsDomainOfIsIntegrallyClosedOfFiniteOfIsTorsionFree
AlgEquiv.instFunLike
β€”FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsIntegral.of_finite
Module.Finite.of_isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
FractionRing.instIsScalarTower
IsScalarTower.left
Localization.isLocalization
IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
IsAlgebraic.of_finite
IsDomain.to_noZeroDivisors
IsIntegralClosure.of_isIntegrallyClosed
IsSeparable.isAlgebraic
FractionRing.instNontrivial
IsGalois.to_isSeparable
Equiv.prod_comp
Finset.prod_congr
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
isIntegral_norm
IsIntegral.algebraMap
IsIntegralClosure.isIntegral
IsLocalRing.toNontrivial
Field.instIsLocalRing
prod_galRestrict_eq_norm
algebraMap_intTrace πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
Semiring.toModule
LinearMap.instFunLike
intTrace
EuclideanDomain.toCommRing
Field.toEuclideanDomain
trace
β€”AlgEquiv.injective
AlgEquiv.commutes
intTrace.eq_1
map_intTraceAux
IsIntegralClosure.isFractionRing_of_finite_extension
trace_eq_of_equiv_equiv
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
RingHom.ext
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsFractionRing.algEquiv_commutes
Localization.isLocalization
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
algebraMap_intTrace_fractionRing πŸ“–mathematicalβ€”DFunLike.coe
RingHom
FractionRing
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
OreLocalization.instSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
id
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
Semiring.toModule
LinearMap.instFunLike
intTrace
OreLocalization.instCommRing
FractionRing.liftAlgebra
FractionRing.field
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
CommRing.toRing
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
trace
β€”map_intTraceAux
dvd_algebraMap_intNorm_self πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
intNorm
IsIntegral.of_finite
CommRing.toRing
β€”IsIntegral.of_finite
intNorm_zero
Module.Finite.of_isLocalization
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
OreLocalization.instIsScalarTower
IsScalarTower.right
FractionRing.instIsScalarTower
IsScalarTower.left
Localization.isLocalization
IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
IsAlgebraic.of_finite
IsDomain.to_noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
AlgebraicClosure.instIsScalarTower
isIntegral_algHom_iff
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.coe_toAlgHom'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_invβ‚€
IsScalarTower.algebraMap_apply
algebraMap_intNorm
IsIntegralClosure.of_isIntegrallyClosed
instIsDomain
norm_eq_prod_roots
IsAlgClosed.splits
AlgebraicClosure.isAlgClosed
Multiset.prod_erase
DivisionRing.isSimpleRing
Polynomial.eval_map_algebraMap
minpoly.ne_zero
FractionRing.instNontrivial
IsIntegral.isIntegral
IsAlgebraic.isIntegral
Polynomial.aeval_algebraMap_apply
minpoly.aeval
Module.IsTorsionFree.trans_faithfulSMul
Module.Free.self
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
mul_pow
mul_pow_sub_one
Module.finrank_pos
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.finiteDimensional_right
mul_assoc
inv_mul_cancel_leftβ‚€
map_ne_zero_iff
IsIntegral.mul
IsIntegral.pow
isIntegral_algebraMap_iff
Module.isTorsionFree_iff_algebraMap_injective
IsIntegral.multiset_prod
minpoly.monic
Multiset.erase_subset
minpoly.isIntegrallyClosed_eq_field_fractions
Polynomial.aeval_map_algebraMap
IsIntegrallyClosed.isIntegral_iff
IsIntegral.tower_top
mul_inv_cancel_leftβ‚€
intNorm_eq_norm πŸ“–mathematicalβ€”intNorm
norm
CommRing.toRing
β€”MonoidHom.ext
IsFractionRing.injective
Localization.isLocalization
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
algebraMap_intNorm_fractionRing
norm_localization
IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
Module.Free.instFaithfulSMulOfNontrivial
IsAlgebraic.of_finite
IsDomain.to_noZeroDivisors
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
intNorm_eq_of_isLocalization πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
intNorm
β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
Unique.instSubsingleton
mem_nonZeroDivisors_iff_ne_zero
Localization.isLocalization
IsScalarTower.right
IsScalarTower.of_algebraMap_eq'
RingHom.algebraMap_toAlgebra
IsLocalization.map_comp
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
IsIntegral.isAlgebraic
Submonoid.monotone_map
IsLocalization.ringHom_ext
RingHom.comp_assoc
IsScalarTower.algebraMap_eq
RingHom.comp_id
FractionRing.instIsScalarTower
OreLocalization.instIsScalarTower
IsScalarTower.left
IsIntegralClosure.of_isIntegrallyClosed
IsFractionRing.isFractionRing_of_isDomain_of_isLocalization
IsFractionRing.injective
IsScalarTower.algebraMap_apply
algebraMap_intNorm_fractionRing
algebraMap_intNorm
intNorm_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
intNorm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsFractionRing.injective
Localization.isLocalization
algebraMap_intNorm_fractionRing
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
instIsDomain
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
intNorm_intNorm πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
intNorm
β€”FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
algebraMap_intNorm_fractionRing
norm_norm
Module.Free.of_divisionRing
IsDomain.to_noZeroDivisors
FractionRing.instIsScalarTower_1
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
intNorm_map_algEquiv πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
intNorm
AlgEquiv
AlgEquiv.instFunLike
β€”FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
algebraMap_intNorm_fractionRing
Localization.isLocalization
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
IsIntegralClosure.of_isIntegrallyClosed
galLiftEquiv_algebraMap_apply
norm_eq_of_algEquiv
intNorm_ne_zero πŸ“–β€”β€”β€”β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
intNorm_zero πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
intNorm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsFractionRing.injective
Localization.isLocalization
algebraMap_intNorm_fractionRing
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
norm_zero
FractionRing.instNontrivial
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
intTrace_eq_of_isLocalization πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
Semiring.toModule
LinearMap.instFunLike
intTrace
β€”Unique.instSubsingleton
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
IsIntegralClosure.of_isIntegrallyClosed
Localization.isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
IsIntegral.of_finite
IsIntegralClosure.isLocalization
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
FractionRing.instIsScalarTower
IsScalarTower.left
isAlgebraic_of_isFractionRing
IsScalarTower.of_algebraMap_eq'
RingHom.algebraMap_toAlgebra
IsLocalization.map_comp
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
Submonoid.monotone_map
IsLocalization.ringHom_ext
RingHom.comp_assoc
IsScalarTower.algebraMap_eq
RingHom.comp_id
Module.Finite.of_isLocalization
IsFractionRing.isFractionRing_of_isDomain_of_isLocalization
IsFractionRing.injective
IsScalarTower.algebraMap_apply
algebraMap_intTrace_fractionRing
algebraMap_intTrace
intTrace_eq_trace πŸ“–mathematicalβ€”intTrace
trace
β€”LinearMap.ext
IsFractionRing.injective
Localization.isLocalization
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
algebraMap_intTrace_fractionRing
trace_localization
IsIntegralClosure.isLocalization
Module.Free.instFaithfulSMulOfNontrivial
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
IsIntegralClosure.of_isIntegrallyClosed
IsIntegral.of_finite
isAlgebraic_of_isFractionRing
map_intNormAux πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
intNormAux
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
norm
β€”IsIntegralClosure.algebraMap_mk'
map_intTraceAux πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
Semiring.toModule
LinearMap.instFunLike
intTraceAux
EuclideanDomain.toCommRing
Field.toEuclideanDomain
trace
β€”IsIntegralClosure.algebraMap_equiv
integralClosure.isIntegralClosure
IsIntegralClosure.of_isIntegrallyClosed
IsScalarTower.left
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
IsScalarTower.subalgebra'
IsScalarTower.right

(root)

Definitions

NameCategoryTheorems
galLift πŸ“–CompOp
8 mathmath: galLift_algebraMap_apply, galLift_comp, galLiftEquiv_apply, galLiftEquiv_symm_apply, galLift_galRestrict', galLift_id, galRestrict'_galLift, galRestrictHom_symm_apply
galLiftEquiv πŸ“–CompOp
3 mathmath: galLiftEquiv_apply, galLiftEquiv_symm_apply, galLiftEquiv_algebraMap_apply
galRestrict πŸ“–CompOp
9 mathmath: galRestrict_symm_algebraMap_apply, Ideal.exists_comap_galRestrict_eq, Ideal.coe_smul_primesOver_mk_eq_map_galRestrict, coe_galRestrict_apply, algebraMap_galRestrict_apply, groupCohomology.exists_mul_galRestrict_of_norm_eq_one, galRestrict_apply, Ideal.coe_smul_primesOver_eq_map_galRestrict, prod_galRestrict_eq_norm
galRestrict' πŸ“–CompOp
6 mathmath: galRestrict'_id, galLift_galRestrict', galRestrict'_galLift, galRestrict'_comp, algebraMap_galRestrict'_apply, galRestrictHom_apply
galRestrictHom πŸ“–CompOp
6 mathmath: coe_galRestrict_apply, galRestrictHom_symm_algebraMap_apply, galRestrict_apply, galRestrictHom_symm_apply, galRestrictHom_apply, algebraMap_galRestrictHom_apply
instFintypeAlgEquivOfIsDomainOfIsIntegrallyClosedOfFiniteOfIsTorsionFree πŸ“–CompOp
1 mathmath: Algebra.algebraMap_intNorm_of_isGalois

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_galRestrict'_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
AlgHom
AlgHom.funLike
galRestrict'
Semifield.toCommSemiring
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsIntegralClosure.algebraMap_equiv
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
algebraMap_galRestrictHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
AlgHom
AlgHom.funLike
MulEquiv
Semifield.toCommSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgHom.End
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrictHom
β€”algebraMap_galRestrict'_apply
algebraMap_galRestrict_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
AlgEquiv
AlgEquiv.instFunLike
MulEquiv
Semifield.toCommSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
β€”algebraMap_galRestrictHom_apply
coe_galRestrict_apply πŸ“–mathematicalβ€”AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
DFunLike.coe
MulEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
AlgHom
AlgHom.End
galRestrictHom
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
galLiftEquiv_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
galLiftEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”galLift_algebraMap_apply
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
galLiftEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
galLiftEquiv
AlgHom
AlgHom.funLike
galLift
AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
galLiftEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
AlgEquiv.symm
galLiftEquiv
AlgHom
AlgHom.funLike
galLift
AlgHomClass.toAlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
galLift_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
galLift
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsLocalization.lift_eq
galLift_comp πŸ“–mathematicalβ€”galLift
AlgHom.comp
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.injective
IsIntegralClosure.isLocalization
AlgHom.coe_ringHom_injective
IsLocalization.ringHom_ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.ext
galLift_algebraMap_apply
galLift_galRestrict' πŸ“–mathematicalβ€”galLift
galRestrict'
β€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.injective
IsIntegralClosure.isLocalization
AlgHom.coe_ringHom_injective
IsLocalization.ringHom_ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.ext
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
IsLocalization.lift_comp
IsIntegralClosure.algebraMap_equiv
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
galLift_id πŸ“–mathematicalβ€”galLift
AlgHom.id
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”AlgHom.ext
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
IsLocalization.lift.congr_simp
IsLocalization.lift_id
galRestrict'_comp πŸ“–mathematicalβ€”galRestrict'
AlgHom.comp
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”AlgHom.ext
AlgEquiv.injective
integralClosure.isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right
AlgEquiv.symm_apply_apply
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsIntegralClosure.algebraMap_equiv
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
galRestrict'_galLift πŸ“–mathematicalβ€”galRestrict'
galLift
β€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsFractionRing.injective
IsIntegralClosure.isLocalization
AlgHom.ext
IsIntegralClosure.algebraMap_injective
IsIntegralClosure.algebraMap_equiv
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHomCompTriple.comp_eq
RingHomCompTriple.right_ids
IsLocalization.lift_eq
galRestrict'_id πŸ“–mathematicalβ€”galRestrict'
AlgHom.id
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”AlgHom.ext
IsIntegralClosure.algebraMap_injective
algebraMap_galRestrict'_apply
galRestrictHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommSemiring
CommSemiring.toSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgHom.End
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrictHom
galRestrict'
β€”β€”
galRestrictHom_symm_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
MulEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgHom.End
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
galRestrictHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”galLift_algebraMap_apply
galRestrictHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgHom.End
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
galRestrictHom
galLift
β€”β€”
galRestrict_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
MulEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
AlgHom
AlgHom.funLike
AlgHom.End
galRestrictHom
AlgHomClass.toAlgHom
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
β€”β€”
galRestrict_symm_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
MulEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
galRestrict
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”galRestrictHom_symm_algebraMap_apply
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
prod_galRestrict_eq_norm πŸ“–mathematicalβ€”Finset.prod
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommMonoid
Finset.univ
AlgEquiv.fintype
DFunLike.coe
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgEquiv.instFunLike
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsGalois.to_isSeparable
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
IsIntegralClosure.mk'
IsIntegralClosure.of_isIntegrallyClosed
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsPurelyInseparable.isIntegral
CommRing.toRing
isPurelyInseparable_self
MonoidHom
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
MonoidHom.instFunLike
Algebra.norm
Algebra.isIntegral_norm
IsIntegral.algebraMap
IsIntegralClosure.isIntegral
β€”IsIntegralClosure.algebraMap_injective
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsGalois.to_isSeparable
IsIntegralClosure.of_isIntegrallyClosed
IsScalarTower.left
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
Algebra.isIntegral_norm
IsIntegral.algebraMap
IsIntegralClosure.isIntegral
IsScalarTower.algebraMap_apply
IsScalarTower.algebraMap_eq
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finset.prod_congr
algebraMap_galRestrict_apply
IsIntegralClosure.algebraMap_mk'
Algebra.norm_eq_prod_automorphisms

---

← Back to Index