Documentation Verification Report

IntegrallyClosed

πŸ“ Source: Mathlib/RingTheory/IntegralClosure/IntegrallyClosed.lean

Statistics

MetricCount
DefinitionsIsIntegrallyClosedIn
1
TheoremsisIntegrallyClosedIn, isIntegrallyClosedIn, pow_iff, instIsIntegrallyClosed, of_isIntegralClosure_of_isIntegrallyClosedIn, of_isIntegrallyClosed, of_isIntegrallyClosedIn, algebraMap_eq_of_integral, exists_algebraMap_eq_of_isIntegral_pow, exists_algebraMap_eq_of_pow_mem_subalgebra, instIsIntegralClosure, integralClosure_eq_bot, integralClosure_eq_bot_iff, isIntegral_iff, of_equiv, of_isIntegrallyClosedIn, of_isIntegrallyClosed_of_isIntegrallyClosedIn, pow_dvd_pow_iff, algebraMap_eq_of_integral, exists_algebraMap_eq_of_isIntegral_pow, exists_algebraMap_eq_of_pow_mem_subalgebra, inst, integralClosure_eq_bot, integralClosure_eq_bot_iff, isIntegral_iff, of_isIntegralClosure, integralClosure_le_iff, integralClosure_subring_le_iff, isIntegrallyClosedIn_iff, isIntegrallyClosed_iff, instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure, instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure, isIntegrallyClosedOfFiniteExtension, isIntegrallyClosedIn_iff, isIntegrallyClosed_iff, isIntegrallyClosed_iff_isIntegralClosure, isIntegrallyClosed_iff_isIntegrallyClosedIn, isIntegrallyClosed_of_isLocalization
38
Total39

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegrallyClosedIn πŸ“–mathematicalβ€”IsIntegrallyClosedInβ€”AlgHom.isIntegrallyClosedIn
AlgEquivClass.toAlgHomClass
instAlgEquivClass
injective

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegrallyClosedIn πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
funLike
IsIntegrallyClosedInβ€”Function.Injective.of_comp
commutes
isIntegral_algHom_iff

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
pow_iff πŸ“–mathematicalβ€”Associated
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
β€”IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
IsIntegrallyClosed.pow_dvd_pow_iff

Field

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIntegrallyClosed πŸ“–mathematicalβ€”IsIntegrallyClosed
EuclideanDomain.toCommRing
toEuclideanDomain
β€”isIntegrallyClosed_iff
instIsFractionRing

IsIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
of_isIntegralClosure_of_isIntegrallyClosedIn πŸ“–mathematicalβ€”IsIntegralClosure
CommRing.toCommSemiring
β€”IsScalarTower.algebraMap_eq
algebraMap_injective
isIntegral_iff
IsIntegral.tower_top
isIntegral_algebraMap_iff
IsScalarTower.algebraMap_apply
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
of_isIntegrallyClosed πŸ“–mathematicalβ€”IsIntegralClosure
CommRing.toCommSemiring
β€”of_isIntegrallyClosedIn
IsIntegrallyClosed.instIsIntegralClosure
of_isIntegrallyClosedIn πŸ“–mathematicalβ€”IsIntegralClosure
CommRing.toCommSemiring
β€”algebraMap_injective
isIntegral_iff
IsIntegral.tower_top
IsIntegral.map
IsScalarTower.right
AlgHom.algHomClass
IsScalarTower.left
Algebra.IsIntegral.isIntegral

IsIntegrallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_eq_of_integral πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsIntegralClosure.isIntegral_iff
instIsIntegralClosure
exists_algebraMap_eq_of_isIntegral_pow πŸ“–mathematicalIsIntegral
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”IsIntegrallyClosedIn.exists_algebraMap_eq_of_isIntegral_pow
instIsIntegralClosure
exists_algebraMap_eq_of_pow_mem_subalgebra πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Subalgebra.toCommSemiring
RingHom.instFunLike
algebraMap
Subalgebra.toAlgebra
Algebra.id
β€”IsIntegrallyClosedIn.exists_algebraMap_eq_of_pow_mem_subalgebra
instIsIntegralClosure
instIsIntegralClosure πŸ“–mathematicalβ€”IsIntegralClosure
CommRing.toCommSemiring
β€”isIntegrallyClosed_iff_isIntegralClosure
integralClosure_eq_bot πŸ“–mathematicalβ€”integralClosure
Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”integralClosure_eq_bot_iff
integralClosure_eq_bot_iff πŸ“–mathematicalβ€”integralClosure
Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsIntegrallyClosed
β€”IsIntegrallyClosedIn.integralClosure_eq_bot_iff
IsFractionRing.injective
isIntegrallyClosed_iff_isIntegrallyClosedIn
isIntegral_iff πŸ“–mathematicalβ€”IsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsIntegrallyClosedIn.isIntegral_iff
instIsIntegralClosure
of_equiv πŸ“–mathematicalβ€”IsIntegrallyClosedβ€”Localization.isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
isIntegrallyClosed_iff
IsIntegral.tower_top
isIntegral_algEquiv
IsFractionRing.algEquivOfAlgEquiv_algebraMap
AlgEquiv.symm_apply_eq
of_isIntegrallyClosedIn πŸ“–mathematicalβ€”IsIntegrallyClosedβ€”Function.Injective.isDomain
instIsDomain
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
FaithfulSMul.algebraMap_injective
Localization.isLocalization
OreLocalization.instIsScalarTower
IsScalarTower.right
isIntegrallyClosed_iff
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
AlgHom.commutes
IsIntegralClosure.isIntegral_iff
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
of_isIntegrallyClosed_of_isIntegrallyClosedIn πŸ“–mathematicalβ€”IsIntegrallyClosedβ€”IsIntegralClosure.of_isIntegralClosure_of_isIntegrallyClosedIn
OreLocalization.instIsScalarTower
IsScalarTower.right
of_isIntegrallyClosedIn
FractionRing.instFaithfulSMul
pow_dvd_pow_iff πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”zero_pow
MulZeroClass.zero_mul
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
IsFractionRing.injective
Localization.isLocalization
IsDomain.toNontrivial
Polynomial.monic_X_pow_sub_C
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
div_pow
Polynomial.evalβ‚‚_C
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
Localization.instNoZeroDivisors
FractionRing.instNontrivial
sub_self
algebraMap_eq_of_integral
mul_div_cancelβ‚€
pow_dvd_pow_of_dvd

IsIntegrallyClosedIn

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_eq_of_integral πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsIntegralClosure.isIntegral_iff
exists_algebraMap_eq_of_isIntegral_pow πŸ“–mathematicalIsIntegral
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”isIntegral_iff
IsIntegral.of_pow
exists_algebraMap_eq_of_pow_mem_subalgebra πŸ“–mathematicalSubalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Subalgebra.toCommSemiring
RingHom.instFunLike
algebraMap
Subalgebra.toAlgebra
Algebra.id
β€”exists_algebraMap_eq_of_isIntegral_pow
isIntegral_iff
inst πŸ“–mathematicalβ€”IsIntegrallyClosedIn
Algebra.id
CommRing.toCommSemiring
β€”Algebra.IsIntegral.of_finite
Module.Finite.self
integralClosure_eq_bot πŸ“–mathematicalβ€”integralClosure
Bot.bot
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”integralClosure_eq_bot_iff
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
integralClosure_eq_bot_iff πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
integralClosure
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsIntegrallyClosedIn
β€”eq_bot_iff
Set.mem_range
Algebra.mem_bot
isIntegral_algebraMap
isIntegral_iff
isIntegral_iff πŸ“–mathematicalβ€”IsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsIntegralClosure.isIntegral_iff
of_isIntegralClosure πŸ“–mathematicalβ€”IsIntegrallyClosedInβ€”IsIntegralClosure.isIntegral_algebra
IsIntegralClosure.tower_top

Subring

Theorems

NameKindAssumesProvesValidatesDepends On
integralClosure_le_iff πŸ“–mathematicalβ€”Subring
CommRing.toRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subalgebra.toSubring
integralClosure
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
SubringClass.toSubsemiringClass
isIntegrallyClosedIn_iff
instSubringClass
IsScalarTower.of_algebraMap_eq
IsIntegral.tower_top
integralClosure_subring_le_iff πŸ“–mathematicalβ€”Subring
CommRing.toRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subalgebra.toSubring
SetLike.instMembership
SubringClass.toCommRing
Algebra.ofSubsemiring
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
SubringClass.toSubsemiringClass
integralClosure
ofClass
β€”SubringClass.toSubsemiringClass
integralClosure_le_iff
SetLike.le_def
instIsConcreteLE
isIntegrallyClosedIn_iff πŸ“–mathematicalβ€”IsIntegrallyClosedIn
SetLike.instMembership
SubringClass.toCommRing
Algebra.ofSubsemiring
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.id
SubringClass.toSubsemiringClass
CommRing.toRing
β€”SubringClass.toSubsemiringClass
isIntegrallyClosedIn_iff
FaithfulSMul.algebraMap_injective
Subsemiring.instFaithfulSMulSubtypeMem
instFaithfulSMul
Subtype.range_val
isIntegrallyClosed_iff πŸ“–mathematicalβ€”IsIntegrallyClosed
SetLike.instMembership
SubringClass.toCommRing
β€”SubringClass.toSubsemiringClass
isIntegrallyClosed_iff
Subtype.range_val

(root)

Definitions

NameCategoryTheorems
IsIntegrallyClosedIn πŸ“–MathDef
10 mathmath: IsIntegrallyClosedIn.inst, instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure, IsIntegrallyClosedIn.of_isIntegralClosure, AlgEquiv.isIntegrallyClosedIn, instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure, IsIntegrallyClosedIn.integralClosure_eq_bot_iff, isIntegrallyClosedIn_iff, AlgHom.isIntegrallyClosedIn, isIntegrallyClosed_iff_isIntegrallyClosedIn, Subring.isIntegrallyClosedIn_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure πŸ“–mathematicalβ€”IsIntegrallyClosedIn
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
β€”isIntegrallyClosedIn_iff
FaithfulSMul.algebraMap_injective
Subalgebra.instFaithfulSMulSubtypeMem
instFaithfulSMul
isIntegral_trans
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.AlgebraIsIntegral
instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure πŸ“–mathematicalβ€”IsIntegrallyClosedIn
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
Subalgebra.toSubring
integralClosure
Subring.toCommRing
Algebra.ofSubring
Algebra.id
CommRing.toCommSemiring
β€”instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure
isIntegrallyClosedIn_iff πŸ“–mathematicalβ€”IsIntegrallyClosedIn
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”isIntegral_algebraMap
isIntegrallyClosed_iff πŸ“–mathematicalβ€”IsIntegrallyClosed
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”isIntegrallyClosed_iff_isIntegrallyClosedIn
IsFractionRing.injective
isIntegrallyClosed_iff_isIntegralClosure πŸ“–mathematicalβ€”IsIntegrallyClosed
IsIntegralClosure
CommRing.toCommSemiring
β€”isIntegrallyClosed_iff_isIntegrallyClosedIn
isIntegrallyClosed_iff_isIntegrallyClosedIn πŸ“–mathematicalβ€”IsIntegrallyClosed
IsIntegrallyClosedIn
β€”AlgEquiv.isIntegrallyClosedIn
Localization.isLocalization
isIntegrallyClosed_of_isLocalization πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
IsIntegrallyClosedβ€”Localization.isLocalization
IsScalarTower.right
IsScalarTower.of_algebraMap_eq'
RingHom.algebraMap_toAlgebra
IsLocalization.map_comp
RingHomCompTriple.comp_eq
RingHomCompTriple.ids
IsFractionRing.isFractionRing_of_isDomain_of_isLocalization
isIntegrallyClosed_iff_isIntegralClosure
IsFractionRing.injective
IsIntegral.exists_multiple_integral_of_isLocalization
isIntegrallyClosed_iff
IsLocalization.lift_mk'_spec
RingHom.comp_id
Algebra.smul_def
Submonoid.mk_smul
isIntegral_algebraMap

integralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegrallyClosedOfFiniteExtension πŸ“–mathematicalβ€”IsIntegrallyClosed
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommRing
β€”IsIntegrallyClosed.integralClosure_eq_bot_iff
isFractionRing_of_finite_extension
integralClosure_idem

---

← Back to Index