Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/IntegralClosure/IsIntegralClosure/Basic.lean

Statistics

MetricCount
DefinitionsmapIntegralClosure, mapIntegralClosure, equiv, mk'
4
Theoremscoe_mapIntegralClosure, coe_mapIntegralClosure, adjoin, finite, inv_mem, isField_iff_isField, isLocalHom, quotient, tower_bot, tower_top, trans, isIntegral, isIntegral', finite_iff_isIntegral_and_finiteType, isIntegral_iSup, isIntegral_sup, det, inv, inv_mem, inv_mem_adjoin, isUnit, mem_of_inv_mem, multiset_prod, multiset_sum, nsmul, of_mem_closure', of_mem_closure'', of_mul_unit, pow, pow_iff, prod, sum, tower_bot, tower_bot_of_field, zsmul, algebraMap_equiv, algebraMap_lift, algebraMap_mk', isField, isIntegral, isIntegral_algebra, isTorsionFree, mk'_add, mk'_algebraMap, mk'_mul, mk'_one, mk'_zero, tower_top, quotient_isIntegral, quotient_isIntegralElem, of_isIntegral_of_finiteType, isLocalHom, quotient, to_finite, tower_bot, tower_top, trans, of_mul_unit, finite_iff_isIntegral_and_finiteType, of_comp, isIntegralElem_leadingCoeff_mul, isIntegral_of_surjective, adjoin_le_integralClosure, instIsDomainSubtypeMemSubalgebraIntegralClosure, instIsIntegralMvPolynomial, instIsIntegralPolynomial, instIsIntegralQuotientIdeal, AlgebraIsIntegral, isIntegral, isIntegralClosure, integralClosure_eq_top_iff, integralClosure_idem, integralClosure_map_algEquiv, isField_of_isIntegral_of_isField, isField_of_isIntegral_of_isField', isIntegral_leadingCoeff_smul, isIntegral_quotientMap_iff, isIntegral_trans, le_integralClosure_iff_isIntegral, mem_integralClosure_iff_mem_fg, roots_mem_integralClosure
81
Total85

AlgEquiv

Definitions

NameCategoryTheorems
mapIntegralClosure πŸ“–CompOp
1 mathmath: coe_mapIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mapIntegralClosure πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
DFunLike.coe
AlgEquiv
Subalgebra.toSemiring
Subalgebra.algebra
instFunLike
mapIntegralClosure
β€”β€”

AlgHom

Definitions

NameCategoryTheorems
mapIntegralClosure πŸ“–CompOp
1 mathmath: coe_mapIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mapIntegralClosure πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
funLike
mapIntegralClosure
β€”β€”

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
finite_iff_isIntegral_and_finiteType πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
IsIntegral
CommRing.toRing
FiniteType
β€”IsIntegral.of_finite
Module.Finite.finiteType
IsIntegral.finite
isIntegral_iSup πŸ“–mathematicalβ€”IsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subalgebra.toRing
CommRing.toRing
Subalgebra.algebra
β€”β€”
isIntegral_sup πŸ“–mathematicalβ€”IsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subalgebra.toRing
CommRing.toRing
Subalgebra.algebra
β€”β€”

Algebra.IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin πŸ“–mathematicalIsIntegral
CommRing.toRing
Algebra.IsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Subalgebra.toRing
Subalgebra.algebra
β€”le_integralClosure_iff_isIntegral
Algebra.adjoin_le
finite πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”fg_adjoin_of_finite
Finset.finite_toSet
isIntegral
inv_mem πŸ“–mathematicalSubalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”IsIntegral.inv_mem
isIntegral_algHom_iff
Subtype.val_injective
isIntegral
isField_iff_isField πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsFieldβ€”isField_of_isIntegral_of_isField'
isField_of_isIntegral_of_isField
isLocalHom πŸ“–mathematicalβ€”IsLocalHom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
algebraMap
β€”RingHom.IsIntegral.isLocalHom
algebraMap_isIntegral_iff
FaithfulSMul.algebraMap_injective
quotient πŸ“–mathematicalβ€”Algebra.IsIntegral
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal.Quotient.commRing
Ideal.Quotient.instRingQuotient
Ideal.instAlgebraQuotientComapRingHomAlgebraMap
β€”RingHom.instRingHomClass
RingHom.IsIntegral.quotient
isIntegral
tower_bot πŸ“–mathematicalβ€”Algebra.IsIntegral
CommRing.toRing
β€”RingHom.IsIntegral.tower_bot
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsScalarTower.algebraMap_eq
isIntegral
tower_top πŸ“–mathematicalβ€”Algebra.IsIntegral
CommRing.toRing
β€”RingHom.IsIntegral.tower_top
IsScalarTower.algebraMap_eq
isIntegral
trans πŸ“–mathematicalβ€”Algebra.IsIntegralβ€”isIntegral_trans
isIntegral

Algebra.IsPushout

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral πŸ“–mathematicalβ€”Algebra.IsIntegral
CommRing.toRing
β€”isIntegral'
symm
isIntegral' πŸ“–mathematicalβ€”Algebra.IsIntegral
CommRing.toRing
β€”Algebra.to_smulCommClass
AlgEquiv.isIntegral_iff
Algebra.IsIntegral.tensorProduct

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
det πŸ“–mathematicalIsIntegral
CommRing.toRing
Matrix.detβ€”Matrix.det_apply
sum
zsmul
prod
inv πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”of_mem_of_fg
fg_adjoin_singleton
inv_mem_adjoin
inv_mem πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”Algebra.adjoin_le
Set.singleton_subset_iff
inv_mem_adjoin
inv_mem_adjoin πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”eq_or_ne
inv_zero
Subalgebra.zero_mem
Module.Finite.of_fg
fg_adjoin_singleton
Algebra.subset_adjoin
FiniteDimensional.exists_mul_eq_one
Subalgebra.isDomain
DivisionRing.isDomain
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
mul_inv_cancelβ‚€
isUnit πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”Module.Finite.of_fg
fg_adjoin_singleton
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Algebra.subset_adjoin
FiniteDimensional.isUnit
Subalgebra.isDomain
mem_of_inv_mem πŸ“–β€”IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
β€”β€”inv_inv
inv_mem
inv
multiset_prod πŸ“–mathematicalIsIntegral
CommRing.toRing
Multiset.prod
CommRing.toCommMonoid
β€”Subalgebra.multiset_prod_mem
multiset_sum πŸ“–mathematicalIsIntegral
CommRing.toRing
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Subalgebra.multiset_sum_mem
nsmul πŸ“–mathematicalIsIntegralAddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”smul
AddCommMonoid.nat_isScalarTower
of_mem_closure' πŸ“–β€”IsIntegral
CommRing.toRing
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
β€”β€”Subring.closure_induction
isIntegral_zero
isIntegral_one
add
neg
mul
of_mem_closure'' πŸ“–β€”RingHom.IsIntegralElem
CommRing.toRing
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
β€”β€”of_mem_closure'
of_mul_unit πŸ“–β€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
IsIntegral
β€”β€”Polynomial.monic_scaleRoots_iff
Algebra.commutes
mul_assoc
mul_one
Polynomial.scaleRoots_aeval_eq_zero
pow πŸ“–mathematicalIsIntegralMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”of_mem_of_fg
fg_adjoin_singleton
Subalgebra.pow_mem
Algebra.subset_adjoin
pow_iff πŸ“–mathematicalβ€”IsIntegral
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”of_pow
pow
prod πŸ“–mathematicalIsIntegral
CommRing.toRing
Finset.prod
CommRing.toCommMonoid
β€”Subalgebra.prod_mem
sum πŸ“–mathematicalIsIntegral
CommRing.toRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Subalgebra.sum_mem
tower_bot πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
IsIntegral
CommRing.toRingβ€”isIntegral_algHom_iff
tower_bot_of_field πŸ“–mathematicalIsIntegral
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
DivisionRing.toRing
Field.toDivisionRing
β€”tower_bot
RingHom.injective
DivisionRing.isSimpleRing
zsmul πŸ“–mathematicalIsIntegralSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”smul
AddCommGroup.intIsScalarTower

IsIntegralClosure

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
4 mathmath: NumberField.RingOfIntegers.withValEquiv_symm_apply, algebraMap_equiv, NumberField.RingOfIntegers.withValEquiv_apply, Rat.ringOfIntegersWithValEquiv_apply
mk' πŸ“–CompOp
7 mathmath: mk'_add, mk'_zero, algebraMap_mk', mk'_algebraMap, mk'_mul, mk'_one, prod_galRestrict_eq_norm

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_equiv πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
AlgEquiv
AlgEquiv.instFunLike
equiv
β€”algebraMap_lift
isIntegral_algebra
algebraMap_lift πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
AlgHom
AlgHom.funLike
lift
β€”algebraMap_mk'
IsIntegral.algebraMap
Algebra.IsIntegral.isIntegral
algebraMap_mk' πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
mk'
β€”isIntegral_iff
isField πŸ“–β€”IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”isIntegral_algebra
isField_of_isIntegral_of_isField'
isIntegral πŸ“–mathematicalβ€”IsIntegral
CommRing.toRing
β€”isIntegral_algebraMap_iff
algebraMap_injective
isIntegral_iff
isIntegral_algebra πŸ“–mathematicalβ€”Algebra.IsIntegral
CommRing.toRing
β€”isIntegral
isTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Function.Injective.moduleIsTorsionFree
algebraMap_injective
Algebra.algebraMap_eq_smul_one
IsScalarTower.smul_assoc
mk'_add πŸ“–mathematicalIsIntegral
CommRing.toRing
mk'
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsIntegral.add
β€”algebraMap_injective
IsIntegral.add
algebraMap_mk'
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
mk'_algebraMap πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
isIntegral_algebraMap
mk'β€”algebraMap_injective
algebraMap_mk'
IsScalarTower.algebraMap_apply
mk'_mul πŸ“–mathematicalIsIntegral
CommRing.toRing
mk'
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsIntegral.mul
β€”algebraMap_injective
IsIntegral.mul
algebraMap_mk'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mk'_one πŸ“–mathematicalIsIntegral
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
isIntegral_one
mk'β€”algebraMap_injective
algebraMap_mk'
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mk'_zero πŸ“–mathematicalIsIntegral
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
isIntegral_zero
mk'β€”algebraMap_injective
algebraMap_mk'
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
tower_top πŸ“–mathematicalβ€”IsIntegralClosureβ€”algebraMap_injective
isIntegral_iff
isIntegral_trans
IsIntegral.tower_top

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
quotient_isIntegral πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.IsIntegral
HasQuotient.Quotient
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.instRingQuotient
Polynomial.commRing
AlgHom.toRingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Algebra.id
Ideal.Quotient.algebra
Polynomial.algebraOfAlgebra
AlgHom.comp
Ideal.Quotient.mkₐ
Algebra.ofId
β€”Ideal.instIsTwoSided_1
Subalgebra.ext
Ideal.Quotient.mkₐ_surjective
Polynomial.aeval_eq_sum_range'
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Polynomial.as_sum_range_C_mul_X_pow
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
IsScalarTower.right
Finset.sum_congr
Polynomial.C_mul'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_mem_adjoin_singleton
adjoin_le_integralClosure
quotient_isIntegralElem
Algebra.mem_top
quotient_isIntegralElem πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.IsIntegralElem
HasQuotient.Quotient
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.instRingQuotient
Polynomial.commRing
RingHom.comp
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
algebraMap
Polynomial.algebraOfAlgebra
Algebra.id
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.X
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.eq_zero_iff_mem
Polynomial.evalβ‚‚_eq_sum_range
Polynomial.as_sum_range_C_mul_X_pow
Finset.sum_congr
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
finite_iff_isIntegral_and_finiteType πŸ“–mathematicalβ€”Finite
IsIntegral
CommRing.toRing
FiniteType
β€”Finite.to_isIntegral
Finite.to_finiteType
IsIntegral.to_finite
isIntegralElem_leadingCoeff_mul πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsIntegralElem
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instFunLike
Polynomial.leadingCoeff
β€”Polynomial.natDegree_zero
Polynomial.monic_integralNormalization
Polynomial.integralNormalization_evalβ‚‚_leadingCoeff_mul
MulZeroClass.mul_zero
Polynomial.coeff_natDegree
Polynomial.coeff_zero
Polynomial.coeff_map
MulZeroClass.zero_mul
isIntegralElem_zero
Polynomial.eq_C_of_natDegree_eq_zero
Polynomial.map_C
Polynomial.evalβ‚‚_C
Polynomial.C_eq_zero
isIntegral_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instFunLike
IsIntegral
CommRing.toRing
β€”isIntegralElem_map

RingHom.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
of_isIntegral_of_finiteType πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
RingHom.Finiteβ€”RingHom.IsIntegral.to_finite

RingHom.IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHom πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
IsLocalHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_neg
Polynomial.eval_X
Polynomial.eval_mul
Polynomial.coeff_zero_reverse
add_eq_zero_iff_neg_eq
Polynomial.eval_C
Polynomial.eval_add
Polynomial.X_mul_divX_add
injective_iff_map_eq_zero'
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Polynomial.evalβ‚‚_hom
Polynomial.evalβ‚‚_reverse_eq_zero_iff
quotient πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
Ideal.Quotient.commRing
Ideal.Quotient.instRingQuotient
Ideal.quotientMap
Ideal.instIsTwoSided_1
le_rfl
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHom.instRingHomClass
Ideal.instIsTwoSided_1
le_rfl
Polynomial.Monic.map
Polynomial.evalβ‚‚_map
Polynomial.hom_evalβ‚‚
to_finite πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
RingHom.Finiteβ€”Algebra.IsIntegral.finite
tower_bot πŸ“–β€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.IsIntegral
CommRing.toRing
RingHom.comp
β€”β€”IsIntegral.tower_bot
IsScalarTower.of_algebraMap_eq
tower_top πŸ“–β€”RingHom.IsIntegral
CommRing.toRing
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”RingHom.isIntegralElem.of_comp
trans πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsScalarTower.of_algebraMap_eq
Algebra.IsIntegral.trans
Algebra.IsIntegral.isIntegral

RingHom.IsIntegralElem

Theorems

NameKindAssumesProvesValidatesDepends On
of_mul_unit πŸ“–β€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
RingHom.IsIntegralElem
β€”β€”IsIntegral.of_mul_unit

RingHom.isIntegralElem

Theorems

NameKindAssumesProvesValidatesDepends On
of_comp πŸ“–β€”RingHom.IsIntegralElem
CommRing.toRing
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”Polynomial.Monic.map
Polynomial.evalβ‚‚_map

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_le_integralClosure πŸ“–mathematicalIsIntegral
CommRing.toRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.adjoin
Set
Set.instSingletonSet
integralClosure
β€”Algebra.adjoin_le_iff
instIsDomainSubtypeMemSubalgebraIntegralClosure πŸ“–mathematicalβ€”IsDomain
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toSemiring
β€”Subalgebra.isDomain
instIsIntegralMvPolynomial πŸ“–mathematicalβ€”Algebra.IsIntegral
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
CommRing.toRing
MvPolynomial.algebraMvPolynomial
β€”Algebra.IsPushout.isIntegral
MvPolynomial.isScalarTower
IsScalarTower.right
MvPolynomial.instIsScalarTower
MvPolynomial.instIsPushout
instIsIntegralPolynomial πŸ“–mathematicalβ€”Algebra.IsIntegral
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
Polynomial.ring
CommRing.toRing
Polynomial.algebra
β€”Algebra.IsPushout.isIntegral
Polynomial.isScalarTower
IsScalarTower.right
instIsScalarTowerPolynomial
IsScalarTower.left
instIsPushoutPolynomial
instIsIntegralQuotientIdeal πŸ“–mathematicalβ€”Algebra.IsIntegral
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.instRingQuotient
Ideal.instAlgebraQuotient
β€”Algebra.IsIntegral.trans
Ideal.Quotient.isScalarTower
IsScalarTower.right
Algebra.IsIntegral.of_finite
Module.Finite.quotient
Module.Finite.self
integralClosure_eq_top_iff πŸ“–mathematicalβ€”integralClosure
Top.top
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.IsIntegral
CommRing.toRing
β€”top_le_iff
le_integralClosure_iff_isIntegral
AlgEquiv.isIntegral_iff
integralClosure_idem πŸ“–mathematicalβ€”integralClosure
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”eq_bot_iff
Algebra.mem_bot
isIntegral_trans
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.AlgebraIsIntegral
integralClosure_map_algEquiv πŸ“–mathematicalβ€”Subalgebra.map
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHomClass.toAlgHom
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
integralClosure
β€”Subalgebra.ext
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Subalgebra.mem_map
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
AlgEquiv.apply_symm_apply
isField_of_isIntegral_of_isField πŸ“–β€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsField
β€”β€”faithfulSMul_iff_algebraMap_injective
IsLocalHom.isField
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Algebra.IsIntegral.isLocalHom
isField_of_isIntegral_of_isField' πŸ“–β€”IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”zero_ne_one
NeZero.one
IsDomain.toNontrivial
mul_comm
IsIntegral.isUnit
Algebra.IsIntegral.isIntegral
Units.val_inv
isIntegral_leadingCoeff_smul πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsIntegral
CommRing.toRing
Algebra.toSMul
Polynomial.leadingCoeff
β€”Algebra.smul_def
RingHom.isIntegralElem_leadingCoeff_mul
Polynomial.aeval_def
isIntegral_quotientMap_iff πŸ“–mathematicalβ€”RingHom.IsIntegral
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.instRingHomClass
Ideal.Quotient.commRing
Ideal.Quotient.instRingQuotient
Ideal.quotientMap
Ideal.instIsTwoSided_1
le_rfl
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.Quotient.ring
β€”RingHom.instRingHomClass
Ideal.instIsTwoSided_1
le_rfl
RingHom.IsIntegral.trans
RingHom.isIntegral_of_surjective
Ideal.Quotient.mk_surjective
RingHom.IsIntegral.tower_top
isIntegral_trans πŸ“–β€”IsIntegralβ€”β€”Submodule.fg_top
fg_adjoin_of_finite
Finset.finite_toSet
Algebra.IsIntegral.isIntegral
Algebra.subset_adjoin
Polynomial.monic_toSubring
IsScalarTower.algebraMap_eq
IsScalarTower.subalgebra
Polynomial.evalβ‚‚_map
Polynomial.map_toSubring
Submodule.addSubmonoidClass
Submodule.smulMemClass
Module.Finite.of_fg
IsIntegral.fg_adjoin_singleton
IsIntegral.of_mem_of_fg
IsScalarTower.subalgebra'
Module.Finite.iff_fg
Submodule.isScalarTower
Module.Finite.trans
Subalgebra.mem_restrictScalars
le_integralClosure_iff_isIntegral πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
integralClosure
Algebra.IsIntegral
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toRing
CommRing.toRing
Subalgebra.algebra
β€”SetLike.forall
isIntegral_algebraMap_iff
IsScalarTower.subalgebra'
IsScalarTower.right
Subtype.coe_injective
Algebra.isIntegral_def
mem_integralClosure_iff_mem_fg πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Submodule.FG
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
β€”IsIntegral.fg_adjoin_singleton
Algebra.subset_adjoin
IsIntegral.of_mem_of_fg
roots_mem_integralClosure πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Multiset
Multiset.instMembership
Polynomial.aroots
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
β€”Polynomial.evalβ‚‚_eq_eval_map
Polynomial.mem_roots
Polynomial.Monic.ne_zero
IsDomain.toNontrivial
Polynomial.Monic.map

integralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
AlgebraIsIntegral πŸ“–mathematicalβ€”Algebra.IsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toRing
CommRing.toRing
Subalgebra.algebra
β€”isIntegral
isIntegral πŸ“–mathematicalβ€”IsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toRing
CommRing.toRing
Subalgebra.algebra
β€”Polynomial.aeval_algHom_apply
AlgHom.algHomClass
Subalgebra.val_apply
Polynomial.aeval_def
isIntegralClosure πŸ“–mathematicalβ€”IsIntegralClosure
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommSemiring
Subalgebra.toAlgebra
Algebra.id
β€”Subtype.coe_injective

---

← Back to Index