Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/IntegralClosure/IsIntegral/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsfinite_adjoin_of_finite_of_isIntegral, finite_adjoin_simple_of_isIntegral, algebraMap, fg_adjoin_singleton, map, map_of_comp_eq, of_aeval_monic, of_pow, of_subring, pair, pair_iff, tower_top, isIntegral_iff, map, map_iff, of_comp, of_map, isIntegralElem_map, isIntegralElem_one, isIntegralElem_zero, span_range_natDegree_eq_adjoin, fg_adjoin_of_finite, isIntegral_algEquiv, isIntegral_algHom_iff, isIntegral_algebraMap, isIntegral_algebraMap_iff, isIntegral_iff_isIntegral_closure_finite, isIntegral_one, isIntegral_zero, isNoetherian_adjoin_finset, map_isIntegral_int
31
Total31

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
finite_adjoin_of_finite_of_isIntegral πŸ“–mathematicalIsIntegral
CommRing.toRing
Module.Finite
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
adjoin
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Subalgebra.instModuleSubtypeMem
β€”Module.Finite.of_fg
fg_adjoin_of_finite
finite_adjoin_simple_of_isIntegral πŸ“–mathematicalIsIntegralModule.Finite
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.instCommRingAdjoinSingleton
Subalgebra.instModuleSubtypeMem
β€”Module.Finite.of_fg
IsIntegral.fg_adjoin_singleton

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
β€”IsScalarTower.algebraMap_eq
Polynomial.hom_evalβ‚‚
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
fg_adjoin_singleton πŸ“–mathematicalIsIntegralSubmodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
Set
Set.instSingletonSet
β€”Submodule.span_range_natDegree_eq_adjoin
Polynomial.aeval_def
map πŸ“–mathematicalIsIntegralDFunLike.coeβ€”eq_1
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
RingHom.IsIntegralElem.map
map_of_comp_eq πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
algebraMap
IsIntegral
DFunLike.coe
RingHom
RingHom.instFunLike
β€”Polynomial.Monic.map
Polynomial.eval_map
Polynomial.map_map
Polynomial.evalβ‚‚_at_apply
RingHom.map_zero
of_aeval_monic πŸ“–β€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
IsIntegral
CommRing.toRing
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
β€”β€”Polynomial.Monic.comp
Polynomial.evalβ‚‚_comp
Polynomial.aeval_def
of_pow πŸ“–β€”IsIntegral
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”β€”Polynomial.Monic.expand
Polynomial.aeval_def
Polynomial.expand_aeval
of_subring πŸ“–β€”IsIntegral
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.toCommRing
Algebra.ofSubring
β€”β€”tower_top
Subring.instIsScalarTowerSubtypeMem
IsScalarTower.left
pair πŸ“–mathematicalIsIntegralProd.instRing
Prod.algebra
CommRing.toCommSemiring
Ring.toSemiring
β€”Polynomial.Monic.mul
Polynomial.aeval_def
Polynomial.aeval_prod_apply
Polynomial.aeval_mul
MulZeroClass.zero_mul
MulZeroClass.mul_zero
pair_iff πŸ“–mathematicalβ€”IsIntegral
Prod.instRing
Prod.algebra
CommRing.toCommSemiring
Ring.toSemiring
β€”map
Prod.isScalarTower
IsScalarTower.left
AlgHom.algHomClass
pair
tower_top πŸ“–β€”IsIntegralβ€”β€”Polynomial.Monic.map
Polynomial.aeval_def
Polynomial.aeval_map_algebraMap

RingEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral_iff πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
algebraMap
toRingHom
IsIntegralβ€”IsIntegral.tower_top
Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
RingEquivClass.toRingHomClass
instRingEquivClass
comp_symm
RingHomCompTriple.comp_eq
RingHomCompTriple.ids

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegralElem_map πŸ“–mathematicalβ€”IsIntegralElem
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
instFunLike
β€”Polynomial.monic_X_sub_C
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X
Polynomial.evalβ‚‚_C
sub_self
isIntegralElem_one πŸ“–mathematicalβ€”IsIntegralElem
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”isIntegralElem_map
map_one
isIntegralElem_zero πŸ“–mathematicalβ€”IsIntegralElem
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”isIntegralElem_map
map_zero

RingHom.IsIntegralElem

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalRingHom.IsIntegralElemRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
β€”Polynomial.evalβ‚‚_eq_eval_map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_iff πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
RingHom.IsIntegralElem
RingHom.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”of_map
map
of_comp πŸ“–β€”RingHom.IsIntegralElem
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
β€”β€”Polynomial.Monic.map
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.map_map
of_map πŸ“–β€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
RingHom.IsIntegralElem
RingHom.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”Polynomial.hom_evalβ‚‚
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
span_range_natDegree_eq_adjoin πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
span
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
SetLike.coe
Finset
Finset.instSetLike
Finset.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finset.range
Polynomial.natDegree
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
Set
Set.instSingletonSet
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Finset.coe_image
Finset.coe_range
Unique.instSubsingleton
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
one_ne_zero'
NeZero.one
LE.le.antisymm
span_le
Finset.mem_image
SetLike.mem_coe
Subalgebra.pow_mem
Algebra.subset_adjoin
AlgHom.mem_range
Algebra.adjoin_singleton_eq_range_aeval
Subalgebra.mem_toSubmodule
Polynomial.modByMonic_add_div
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MulZeroClass.zero_mul
add_zero
Polynomial.sum_C_mul_X_pow_eq
Polynomial.aeval_def
Polynomial.evalβ‚‚_sum
Polynomial.sum_def
sum_mem
addSubmonoidClass
Polynomial.C_mul_X_pow_eq_monomial
Polynomial.evalβ‚‚_monomial
Algebra.smul_def
smul_mem
subset_span
Finset.mem_image_of_mem
Finset.mem_range
LE.le.trans_lt
Polynomial.le_natDegree_of_mem_supp
Polynomial.natDegree_modByMonic_lt

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
fg_adjoin_of_finite πŸ“–mathematicalIsIntegral
CommRing.toRing
Submodule.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
β€”Set.Finite.induction_on
Submodule.ext
Algebra.adjoin_empty
Finset.coe_singleton
Submodule.one_eq_span
Algebra.toSubmodule_bot
Set.union_singleton
IsScalarTower.right
Algebra.adjoin_union_coe_submodule
Submodule.FG.mul
Set.mem_insert_of_mem
IsIntegral.fg_adjoin_singleton
Set.mem_insert
isIntegral_algEquiv πŸ“–mathematicalβ€”IsIntegral
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
β€”AlgEquiv.symm_apply_apply
IsIntegral.map
IsScalarTower.left
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
isIntegral_algHom_iff πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
IsIntegralβ€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.IsIntegralElem.map_iff
AlgHom.comp_algebraMap_of_tower
IsScalarTower.left
isIntegral_algebraMap πŸ“–mathematicalβ€”IsIntegral
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
β€”RingHom.isIntegralElem_map
isIntegral_algebraMap_iff πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
IsIntegral
CommRing.toRing
β€”isIntegral_algHom_iff
isIntegral_iff_isIntegral_closure_finite πŸ“–mathematicalβ€”IsIntegral
Set.Finite
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.closure
Subring.toCommRing
Algebra.ofSubring
β€”Finset.finite_toSet
Polynomial.monic_restriction
Polynomial.aeval_def
SubringClass.toSubsemiringClass
Subring.instSubringClass
Polynomial.aeval_map_algebraMap
Subring.instIsScalarTowerSubtypeMem
IsScalarTower.left
Polynomial.map_restriction
IsIntegral.of_subring
isIntegral_one πŸ“–mathematicalβ€”IsIntegral
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”RingHom.isIntegralElem_one
isIntegral_zero πŸ“–mathematicalβ€”IsIntegral
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”RingHom.isIntegralElem_zero
isNoetherian_adjoin_finset πŸ“–mathematicalIsIntegral
CommRing.toRing
IsNoetherian
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
SetLike.coe
Finset
Finset.instSetLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Subalgebra.toCommRing
Subalgebra.instModuleSubtypeMem
β€”isNoetherian_of_fg_of_noetherian
fg_adjoin_of_finite
Finset.finite_toSet
map_isIntegral_int πŸ“–mathematicalIsIntegral
Int.instCommRing
Ring.toIntAlgebra
DFunLike.coeβ€”IsIntegral.map
AddCommGroup.intIsScalarTower
AlgHom.algHomClass

---

← Back to Index