Documentation Verification Report

IsTensorProduct

πŸ“ Source: Mathlib/RingTheory/IsTensorProduct.lean

Statistics

MetricCount
DefinitionsIsPushout, cancelBaseChange, cancelBaseChangeAux, equiv, pushoutDesc, IsBaseChange, equiv, tensorEquiv, IsTensorProduct, equiv, map
11
TheoremsalgHom_ext, cancelBaseChangeAux_symm_tmul, cancelBaseChange_symm_tmul, cancelBaseChange_tmul, comm, comp_iff, equiv_symm_algebraMap_left, equiv_symm_algebraMap_right, equiv_tmul, of_equiv, out, tensorProduct_tensorProduct, isPushout_iff, lift_algHom_comp_left, lift_algHom_comp_right, pushoutDesc_apply, pushoutDesc_left, pushoutDesc_right, algHom_ext, algHom_ext', comp, comp_iff, equiv_symm_apply, equiv_tmul, iff_lift_unique, inductionOn, lift_comp, lift_eq, linearMap, map_id_lsmul_eq_lsmul_algebraMap, ofEquiv, of_comp, of_equiv, of_lift_unique, equiv_apply, equiv_symm_apply, equiv_toLinearMap, inductionOn, lift_eq, map_comp, map_eq, map_id, map_map, map_mul, map_one, map_pow, of_equiv, isBaseChange, isPushout, isPushout', isTensorProduct, instIsPushout, instIsPushout_1, isBaseChange_tensorProduct_map
54
Total65

Algebra

Definitions

NameCategoryTheorems
IsPushout πŸ“–CompData
27 mathmath: isPushout_of_isLocalization, MonoidAlgebra.instIsPushout, instIsPushoutFractionRingPolynomial_1, IsPushout.comm, instIsPushoutPolynomial_1, IsAlgebraic.instIsPushout, IsAlgebraic.instIsPushout_1, isPushout_iff, TensorProduct.isPushout, IsPushout.comp_iff, AddMonoidAlgebra.instIsPushout, AddMonoidAlgebra.instIsPushout', CommRingCat.isPushout_iff_isPushout, instIsPushoutPolynomial, MonoidAlgebra.instIsPushout', IsPushout.tensorProduct_tensorProduct, IsPushout.of_equiv, instIsPushout_1, instIsPushoutFractionRingPolynomial, MvPolynomial.instIsPushout_1, MvPolynomial.instIsPushout, instIsPushout, TensorProduct.isPushout', IsPushout.symm, instIsPushoutFractionRingMvPolynomial_1, isLocalization_iff_isPushout, instIsPushoutFractionRingMvPolynomial
pushoutDesc πŸ“–CompOp
5 mathmath: pushoutDesc_right, lift_algHom_comp_left, pushoutDesc_apply, lift_algHom_comp_right, pushoutDesc_left

Theorems

NameKindAssumesProvesValidatesDepends On
isPushout_iff πŸ“–mathematicalβ€”IsPushout
IsBaseChange
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
toModule
AlgHom.toLinearMap
IsScalarTower.toAlgHom
β€”β€”
lift_algHom_comp_left πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
AlgHom.comp
pushoutDesc
IsScalarTower.toAlgHom
β€”AlgHom.ext
pushoutDesc_left
lift_algHom_comp_right πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
AlgHom.comp
pushoutDesc
IsScalarTower.toAlgHom
β€”AlgHom.ext
pushoutDesc_right
pushoutDesc_apply πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
pushoutDesc
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
toModule
TensorProduct.instSemiring
TensorProduct.leftAlgebra
TensorProduct.lift
id
AlgEquiv
AlgEquiv.instFunLike
AlgEquiv.symm
IsPushout.equiv
β€”β€”
pushoutDesc_left πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
pushoutDesc
RingHom
RingHom.instFunLike
algebraMap
β€”AlgEquiv.commutes
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mul_one
pushoutDesc_right πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
pushoutDesc
RingHom
RingHom.instFunLike
algebraMap
β€”IsPushout.equiv_symm_algebraMap_right
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
one_mul

Algebra.IsPushout

Definitions

NameCategoryTheorems
cancelBaseChange πŸ“–CompOp
2 mathmath: cancelBaseChange_tmul, cancelBaseChange_symm_tmul
cancelBaseChangeAux πŸ“–CompOp
1 mathmath: cancelBaseChangeAux_symm_tmul
equiv πŸ“–CompOp
4 mathmath: equiv_symm_algebraMap_left, Algebra.pushoutDesc_apply, equiv_tmul, equiv_symm_algebraMap_right

Theorems

NameKindAssumesProvesValidatesDepends On
algHom_ext πŸ“–β€”AlgHom.comp
CommSemiring.toSemiring
IsScalarTower.toAlgHom
β€”β€”AlgHom.ext
IsBaseChange.inductionOn
out
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.congr_fun
Algebra.smul_def
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
cancelBaseChangeAux_symm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Algebra.toModule
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.leftModule
IsScalarTower.to_smulCommClass'
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
cancelBaseChangeAux
TensorProduct.tmul
RingHom
RingHom.instFunLike
algebraMap
β€”RingHomInvPair.ids
IsScalarTower.to_smulCommClass'
Algebra.to_smulCommClass
equiv_tmul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
cancelBaseChange_symm_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Algebra.toModule
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
instSMulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
cancelBaseChange
TensorProduct.tmul
RingHom
RingHom.instFunLike
algebraMap
β€”cancelBaseChangeAux_symm_tmul
cancelBaseChange_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommGroup.toAddCommMonoid
Algebra.toModule
NonAssocSemiring.toNonUnitalNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.leftModule
instSMulCommClass
Semiring.toModule
Algebra.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
cancelBaseChange
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHomInvPair.ids
instSMulCommClass
Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass'
map_one
MonoidHomClass.toOneHomClass
IsScalarTower.right
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
one_smul
comm πŸ“–mathematicalβ€”Algebra.IsPushoutβ€”symm
comp_iff πŸ“–mathematicalβ€”Algebra.IsPushoutβ€”RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.of_algebraMap_eq
IsScalarTower.algebraMap_apply
LinearMap.ext
Algebra.isPushout_iff
IsBaseChange.comp_iff
out
equiv_symm_algebraMap_left πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
AlgEquiv.instFunLike
AlgEquiv.symm
equiv
RingHom
RingHom.instFunLike
algebraMap
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
AlgEquiv.symm_apply_eq
equiv_tmul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
equiv_symm_algebraMap_right πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
AlgEquiv.instFunLike
AlgEquiv.symm
equiv
RingHom
RingHom.instFunLike
algebraMap
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
AlgEquiv.symm_apply_eq
equiv_tmul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
equiv_tmul πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
AlgEquiv.instFunLike
equiv
TensorProduct.tmul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
RingHom
RingHom.instFunLike
algebraMap
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
out
IsBaseChange.equiv_tmul
Algebra.smul_def
of_equiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingEquiv.toRingHom
AlgEquiv.toRingEquiv
algebraMap
Algebra.IsPushoutβ€”Algebra.isPushout_iff
IsBaseChange.of_equiv
Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
one_smul
DFunLike.congr_fun
out πŸ“–mathematicalβ€”IsBaseChange
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
AlgHom.toLinearMap
IsScalarTower.toAlgHom
β€”β€”
tensorProduct_tensorProduct πŸ“–mathematicalRingHom.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.TensorProduct.instCommSemiring
Algebra.TensorProduct.instSemiring
algebraMap
AlgHom.toRingHom
Algebra.TensorProduct.instAlgebra
Algebra.TensorProduct.includeRight
Algebra.IsPushout
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
TensorProduct.isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
β€”Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
TensorProduct.isScalarTower_left
IsScalarTower.right
TensorProduct.AlgebraTensorModule.curry_injective
LinearMap.ext_ring
LinearMap.ext
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
isBaseChange_tensorProduct_map
IsBaseChange.linearMap

IsBaseChange

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
5 mathmath: equiv_symm_apply, endHom_apply, toDual_apply, equiv_tmul, linearMapLeftRightHom_apply
tensorEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algHom_ext πŸ“–β€”IsBaseChange
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”LinearMap.ext
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.map_smul
map_add
SemilinearMapClass.toAddHomClass
algHom_ext' πŸ“–β€”IsBaseChange
LinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
β€”β€”RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
algHom_ext
LinearMap.congr_fun
comp πŸ“–mathematicalIsBaseChangeLinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
β€”of_lift_unique
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
smul_assoc
Algebra.smul_def
SemigroupAction.mul_smul
LinearMap.ext
lift_eq
algHom_ext'
lift_comp
comp_iff πŸ“–mathematicalIsBaseChangeLinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
β€”RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
of_comp
comp
equiv_symm_apply πŸ“–mathematicalIsBaseChangeDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
equiv
LinearMap
LinearMap.instFunLike
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
LinearEquiv.symm_apply_eq
equiv_tmul
one_smul
equiv_tmul πŸ“–mathematicalIsBaseChangeDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
equiv
TensorProduct.tmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
LinearMap
LinearMap.instFunLike
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
iff_lift_unique πŸ“–mathematicalβ€”IsBaseChange
ExistsUnique
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.comp
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
β€”RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
lift_comp
algHom_ext'
of_lift_unique
inductionOn πŸ“–β€”IsBaseChange
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”IsTensorProduct.inductionOn
lift_comp πŸ“–mathematicalIsBaseChangeLinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
lift
β€”LinearMap.ext
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
lift_eq
lift_eq πŸ“–mathematicalIsBaseChangeDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
lift
β€”IsTensorProduct.lift_eq
one_smul
linearMap πŸ“–mathematicalβ€”IsBaseChange
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Algebra.toModule
IsScalarTower.right
Algebra.linearMap
β€”of_equiv
IsScalarTower.right
RingHomInvPair.ids
Algebra.to_smulCommClass
Algebra.algebraMap_eq_smul_one
map_id_lsmul_eq_lsmul_algebraMap πŸ“–mathematicalIsBaseChangeIsTensorProduct.map
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
LinearMap.restrictScalars
LinearMap
RingHom.id
LinearMap.addCommMonoid
LinearMap.module
Semiring.toModule
DFunLike.coe
LinearMap.instFunLike
LinearMap.flip
Algebra.linearMap
Module.End
Module.End.instSemiring
Module.End.instAlgebra
Algebra.toSMul
Algebra.id
LinearMap.id
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.lsmul
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom
RingHom.instFunLike
algebraMap
β€”LinearMap.ext
smulCommClass_self
LinearMap.IsScalarTower.compatibleSMul
IsTensorProduct.inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_zero
IsTensorProduct.map_eq
map_smul
SemilinearMapClass.toMulActionSemiHomClass
algebraMap_smul
SMulCommClass.smul_comm
IsScalarTower.to_smulCommClass
map_add
SemilinearMapClass.toAddHomClass
smul_add
ofEquiv πŸ“–mathematicalβ€”IsBaseChange
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
of_lift_unique
IsScalarTower.left
Module.ext
one_smul
smul_smul
smul_assoc
smul_eq_mul
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
LinearMap.ext
LinearEquiv.symm_apply_apply
LinearEquiv.apply_symm_apply
of_comp πŸ“–β€”IsBaseChange
LinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
β€”β€”RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
of_lift_unique
IsScalarTower.of_algebraMap_smul
IsScalarTower.algebraMap_apply
algebraMap_smul
algHom_ext'
lift_comp
LinearMap.comp_assoc
of_equiv πŸ“–mathematicalDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
LinearMap
LinearMap.instFunLike
IsBaseChangeβ€”RingHomInvPair.ids
Algebra.to_smulCommClass
IsTensorProduct.of_equiv
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
IsScalarTower.right
mul_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
of_lift_unique πŸ“–mathematicalExistsUnique
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.comp
RingHomCompTriple.ids
LinearMap.restrictScalars
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsBaseChangeβ€”RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
Algebra.to_smulCommClass
ULift.isScalarTower''
TensorProduct.isScalarTower_left
IsScalarTower.right
RingHomInvPair.ids
TensorProduct.smulCommClass_left
smulCommClass_self
IsScalarTower.to_smulCommClass
LinearMap.IsScalarTower.compatibleSMul'
LinearMap.instIsScalarTower
SMulCommClass.symm
LinearMap.instSMulCommClass
IsScalarTower.left
TensorProduct.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_zero
smul_assoc
smul_add
map_add
SemilinearMapClass.toAddHomClass
RingHomInvPair.triplesβ‚‚
LinearMap.cancel_left
LinearEquiv.injective
ExistsUnique.unique
LinearMap.ext
ULift.ext
one_smul
TensorProduct.AlgebraTensorModule.curry_injective
LinearMap.ext_ring
LinearEquiv.bijective

IsTensorProduct

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
3 mathmath: equiv_symm_apply, equiv_apply, equiv_toLinearMap
map πŸ“–CompOp
12 mathmath: map_id_injective_of_flat_left, map_map, map_pow, map_injective_of_flat_right_left, map_one, map_id_injective_of_flat_right, IsBaseChange.map_id_lsmul_eq_lsmul_algebraMap, map_injective_of_flat_left_right, map_id, map_mul, map_comp, map_eq

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_apply πŸ“–mathematicalIsTensorProductDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
equiv
LinearMap
LinearMap.instFunLike
TensorProduct.lift
β€”smulCommClass_self
RingHomInvPair.ids
equiv_symm_apply πŸ“–mathematicalIsTensorProductDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
equiv
LinearMap
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.tmul
β€”smulCommClass_self
LinearEquiv.injective
RingHomInvPair.ids
LinearEquiv.apply_symm_apply
equiv_toLinearMap πŸ“–mathematicalIsTensorProductLinearEquiv.toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
equiv
TensorProduct.lift
β€”smulCommClass_self
RingHomInvPair.ids
inductionOn πŸ“–β€”IsTensorProduct
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”smulCommClass_self
RingHomInvPair.ids
LinearEquiv.right_inv
TensorProduct.induction_on
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
TensorProduct.lift.tmul
map_add
SemilinearMapClass.toAddHomClass
lift_eq πŸ“–mathematicalIsTensorProductDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
lift
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”smulCommClass_self
equiv_symm_apply
map_comp πŸ“–mathematicalIsTensorProductmap
LinearMap.comp
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”smulCommClass_self
LinearMap.ext
RingHomCompTriple.ids
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_eq
map_add
SemilinearMapClass.toAddHomClass
map_eq πŸ“–mathematicalIsTensorProductDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
map
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”smulCommClass_self
equiv_symm_apply
map_id πŸ“–mathematicalIsTensorProductmap
LinearMap.id
CommSemiring.toSemiring
β€”smulCommClass_self
LinearMap.ext
inductionOn
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_eq
map_add
SemilinearMapClass.toAddHomClass
map_map πŸ“–mathematicalIsTensorProductDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
map
LinearMap.comp
RingHomCompTriple.ids
β€”smulCommClass_self
DFunLike.congr_fun
RingHomCompTriple.ids
map_comp
map_mul πŸ“–mathematicalIsTensorProductmap
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Module.End.instMul
β€”smulCommClass_self
map_comp
map_one πŸ“–mathematicalIsTensorProductmap
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Module.End.instOne
β€”smulCommClass_self
map_id
map_pow πŸ“–mathematicalIsTensorProductLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
map
β€”smulCommClass_self
pow_zero
map.congr_simp
map_one
pow_succ
map_mul
of_equiv πŸ“–mathematicalDFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
TensorProduct.tmul
LinearMap
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsTensorProductβ€”smulCommClass_self
RingHomInvPair.ids
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
LinearMap.ext
IsScalarTower.to_smulCommClass
LinearEquiv.bijective

TensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
isBaseChange πŸ“–mathematicalβ€”IsBaseChange
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
addCommMonoid
instModule
leftModule
Semiring.toModule
Algebra.to_smulCommClass
isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
DFunLike.coe
LinearMap
RingHom.id
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_left
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
LinearMap.instFunLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.to_smulCommClass
isScalarTower_left
IsScalarTower.right
smulCommClass_left
smulCommClass_self
LinearMap.ext
smul_tmul'
mul_one
isTensorProduct
isPushout πŸ“–mathematicalβ€”Algebra.IsPushout
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.TensorProduct.instCommSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
Algebra.TensorProduct.rightAlgebra
Algebra.TensorProduct.instAlgebra
Algebra.TensorProduct.right_isScalarTower
isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
β€”Algebra.to_smulCommClass
Algebra.TensorProduct.right_isScalarTower
isScalarTower_left
IsScalarTower.right
isBaseChange
isPushout' πŸ“–mathematicalβ€”Algebra.IsPushout
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Algebra.TensorProduct.instCommSemiring
Algebra.TensorProduct.rightAlgebra
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
Algebra.TensorProduct.instAlgebra
isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.right
Algebra.TensorProduct.right_isScalarTower
β€”Algebra.IsPushout.symm
Algebra.to_smulCommClass
Algebra.TensorProduct.right_isScalarTower
isScalarTower_left
IsScalarTower.right
isPushout
isTensorProduct πŸ“–mathematicalβ€”IsTensorProduct
TensorProduct
addCommMonoid
instModule
β€”ext'
Function.bijective_id

(root)

Definitions

NameCategoryTheorems
IsBaseChange πŸ“–MathDef
15 mathmath: IsLocalizedModule.isBaseChange, IsBaseChange.of_lift_unique, isLocalizedModule_iff_isBaseChange, IsBaseChange.of_basis, IsBaseChange.of_fintype_basis, Algebra.isPushout_iff, Algebra.IsPushout.out, KaehlerDifferential.isBaseChange, IsBaseChange.of_equiv, TensorProduct.isBaseChange, IsBaseChange.iff_lift_unique, Algebra.IsAlgebraic.isBaseChange_of_isFractionRing, IsBaseChange.ofEquiv, KaehlerDifferential.isBaseChange_of_formallyEtale, IsBaseChange.linearMap
IsTensorProduct πŸ“–MathDef
2 mathmath: IsTensorProduct.of_equiv, TensorProduct.isTensorProduct

Theorems

NameKindAssumesProvesValidatesDepends On
instIsPushout πŸ“–mathematicalβ€”Algebra.IsPushout
Algebra.id
IsScalarTower.right
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.right
IsScalarTower.left
IsBaseChange.of_equiv
RingHomInvPair.ids
Algebra.to_smulCommClass
one_smul
instIsPushout_1 πŸ“–mathematicalβ€”Algebra.IsPushout
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
β€”Algebra.IsPushout.symm
IsScalarTower.right
IsScalarTower.left
instIsPushout
isBaseChange_tensorProduct_map πŸ“–mathematicalIsBaseChangeTensorProduct
TensorProduct.addCommMonoid
TensorProduct.leftModule
CommSemiring.toSemiring
IsScalarTower.to_smulCommClass
TensorProduct.isScalarTower_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
TensorProduct.AlgebraTensorModule.map
LinearMap.id
β€”RingHomInvPair.ids
IsScalarTower.to_smulCommClass
Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass'
TensorProduct.smulCommClass_left
IsScalarTower.right
RingHomCompTriple.ids
TensorProduct.isScalarTower_left
IsBaseChange.of_equiv
TensorProduct.induction_on
TensorProduct.tmul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
LinearMap.semilinearMapClass
one_smul
TensorProduct.tmul_add
map_add
SemilinearMapClass.toAddHomClass

---

← Back to Index