Documentation Verification Report

Ideal

πŸ“ Source: Mathlib/RingTheory/Jacobson/Ideal.lean

Statistics

MetricCount
DefinitionsIsLocal, jacobson, jacobson
3
Theoremsle_jacobson, mem_jacobson_or_exists_inv, out, comap_jacobson, comap_jacobson_of_surjective, eq_jacobson_iff_notMem, eq_jacobson_iff_sInf_maximal, eq_jacobson_iff_sInf_maximal', exists_mul_add_sub_mem_of_mem_jacobson, exists_mul_sub_mem_of_sub_one_mem_jacobson, instIsTwoSidedJacobson, isLocal_iff, isLocal_of_isMaximal_radical, isRadical_jacobson, isRadical_of_eq_jacobson, isUnit_of_sub_one_mem_jacobson_bot, isMaximal, jacobson_bot, jacobson_eq_bot, jacobson_eq_iff_jacobson_quotient_eq_bot, jacobson_eq_self_of_isMaximal, jacobson_eq_top_iff, jacobson_idem, jacobson_mono, jacobson_radical_eq_jacobson, jacobson_top, le_jacobson, map_jacobson_of_bijective, map_jacobson_of_surjective, mem_jacobson_bot, mem_jacobson_iff, radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot, radical_le_jacobson, ringJacobson_le_jacobson, asIdeal_jacobson, mem_jacobson_iff
36
Total39

Ideal

Definitions

NameCategoryTheorems
IsLocal πŸ“–CompData
2 mathmath: isLocal_of_isMaximal_radical, isLocal_iff
jacobson πŸ“–CompOp
44 mathmath: eq_jacobson_iff_sInf_maximal, jacobson_eq_radical, comap_jacobson_of_surjective, jacobson.isMaximal, isJacobsonRing_iff_prime_eq, isRadical_jacobson, jacobson_bot, IsLocalRing.maximalIdeal_le_jacobson, instIsTwoSidedJacobson, jacobson_bot_polynomial_le_sInf_map_maximal, jacobson_eq_top_iff, jacobson_eq_self_of_isMaximal, eq_jacobson_iff_sInf_maximal', jacobson_radical_eq_jacobson, mem_jacobson_iff, TwoSidedIdeal.asIdeal_jacobson, radical_eq_jacobson, IsJacobsonRing.out, IsAdicComplete.le_jacobson_bot, Polynomial.jacobson_bot_of_integral_localization, IsLocal.le_jacobson, eq_jacobson_iff_notMem, matrix_jacobson_le, radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot, jacobson_mono, jacobson_eq_iff_jacobson_quotient_eq_bot, IsArtinianRing.isNilpotent_jacobson_bot, radical_le_jacobson, ringJacobson_le_jacobson, jacobson_top, jacobson_idem, IsLocalRing.jacobson_eq_maximalIdeal, isJacobsonRing_iff, isLocal_iff, IsLocal.mem_jacobson_or_exists_inv, map_jacobson_of_bijective, HenselianRing.jac, map_jacobson_of_surjective, IsArtinianRing.jacobson_eq_radical, le_jacobson, IsLocal.out, comap_jacobson, IsJacobsonRing.out', mem_jacobson_bot

Theorems

NameKindAssumesProvesValidatesDepends On
comap_jacobson πŸ“–mathematicalβ€”comap
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
jacobson
InfSet.sInf
Ideal
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Set.image
setOf
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
IsMaximal
β€”RingHom.instRingHomClass
comap_sInf'
sInf_eq_iInf
comap_jacobson_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
comap
RingHom.instRingHomClass
jacobson
β€”RingHom.instRingHomClass
le_antisymm
top_inf_eq
sInf_insert
comap_sInf'
sInf_eq_iInf
iInf_le_iInf_of_subset
comap_map_of_surjective
sup_le_iff
le_of_eq
le_trans
comap_mono
bot_le
le_sup_left
map_eq_top_or_isMaximal_of_surjective
Set.mem_insert
Set.mem_insert_of_mem
le_map_of_comap_le_of_surjective
comap_sInf
sInf_le
comap_isMaximal_of_surjective
eq_jacobson_iff_notMem πŸ“–mathematicalβ€”jacobson
Ideal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsMaximal
SetLike.instMembership
Submodule.setLike
β€”Mathlib.Tactic.Push.not_forall_eq
mem_sInf
jacobson.eq_1
le_antisymm
Mathlib.Tactic.Contrapose.contrapose₁
le_jacobson
eq_jacobson_iff_sInf_maximal πŸ“–mathematicalβ€”jacobson
IsMaximal
Ring.toSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
InfSet.sInf
Submodule.instInfSet
β€”le_antisymm
mem_sInf
le_sInf_iff
le_of_eq
Submodule.mem_top
le_jacobson
eq_jacobson_iff_sInf_maximal' πŸ“–mathematicalβ€”jacobson
Top.top
Ideal
Ring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
InfSet.sInf
Submodule.instInfSet
β€”eq_jacobson_iff_sInf_maximal
IsMaximal.out
eq_top_iff
le_of_lt
exists_mul_add_sub_mem_of_mem_jacobson πŸ“–mathematicalIdeal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”mem_jacobson_iff
mul_add
Distrib.leftDistribClass
mul_one
exists_mul_sub_mem_of_sub_one_mem_jacobson πŸ“–mathematicalIdeal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”sub_add_cancel
exists_mul_add_sub_mem_of_mem_jacobson
instIsTwoSidedJacobson πŸ“–mathematicalβ€”IsTwoSided
Ring.toSemiring
jacobson
β€”mem_sInf
Submodule.smul_mem
Semigroup.opposite_smulCommClass
mul_mem_right
isMaximal_iff
one_mul
mem_span_singleton_sup
mul_mem_left
le_sup_right
mem_sup_left
mem_span_singleton_self
sub_mul
mul_assoc
eq_sub_iff_add_eq
add_comm
mul_one
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
sub_add_cancel
isLocal_iff πŸ“–mathematicalβ€”IsLocal
IsMaximal
Ring.toSemiring
CommRing.toRing
jacobson
β€”IsLocal.out
isLocal_of_isMaximal_radical πŸ“–mathematicalβ€”IsLocalβ€”le_antisymm
le_sInf
IsPrime.radical_le_iff
IsMaximal.isPrime
sInf_le
le_radical
isRadical_jacobson πŸ“–mathematicalβ€”IsRadical
CommRing.toCommSemiring
jacobson
CommRing.toRing
β€”isRadical_of_eq_jacobson
jacobson_idem
isRadical_of_eq_jacobson πŸ“–mathematicaljacobson
CommRing.toRing
IsRadical
CommRing.toCommSemiring
β€”LE.le.trans
radical_le_jacobson
Eq.le
isUnit_of_sub_one_mem_jacobson_bot πŸ“–mathematicalIdeal
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
Bot.bot
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_mul_sub_mem_of_sub_one_mem_jacobson
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_comm
sub_eq_zero
mem_bot
jacobson_bot πŸ“–mathematicalβ€”jacobson
Bot.bot
Ideal
Ring.toSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ring.jacobson
β€”β€”
jacobson_eq_bot πŸ“–β€”jacobson
Bot.bot
Ideal
Ring.toSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”eq_bot_iff
le_jacobson
jacobson_eq_iff_jacobson_quotient_eq_bot πŸ“–mathematicalβ€”jacobson
CommRing.toRing
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instHasQuotient_1
Quotient.instRingQuotient
Bot.bot
Quotient.semiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ring.toSemiring
β€”instIsTwoSided_1
Submodule.Quotient.mk_surjective
map_quotient_self
map_jacobson_of_surjective
le_of_eq
RingHom.instRingHomClass
mk_ker
RingHom.ker_eq_comap_bot
comap_jacobson_of_surjective
jacobson_eq_self_of_isMaximal πŸ“–mathematicalβ€”jacobsonβ€”le_antisymm
sInf_le
le_of_eq
le_jacobson
jacobson_eq_top_iff πŸ“–mathematicalβ€”jacobson
Top.top
Ideal
Ring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”by_contradiction
exists_le_maximal
lt_top_iff_ne_top
lt_of_le_of_lt
sInf_le
IsMaximal.ne_top
eq_top_iff
le_sInf
jacobson_idem πŸ“–mathematicalβ€”jacobsonβ€”le_antisymm
sInf_le_sInf
sInf_le
le_jacobson
jacobson_mono πŸ“–mathematicalIdeal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobsonβ€”jacobson.eq_1
mem_sInf
jacobson_radical_eq_jacobson πŸ“–mathematicalβ€”jacobson
CommRing.toRing
radical
CommRing.toCommSemiring
β€”le_antisymm
le_trans
le_of_eq
radical_eq_sInf
sInf_le_sInf
sInf_le
IsMaximal.isPrime
jacobson_mono
le_radical
jacobson_top πŸ“–mathematicalβ€”jacobson
Top.top
Ideal
Ring.toSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”eq_top_iff
le_jacobson
le_jacobson πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
β€”mem_sInf
map_jacobson_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
map
jacobson
β€”map_jacobson_of_surjective
le_trans
RingHom.instRingHomClass
le_of_eq
RingHom.injective_iff_ker_eq_bot
bot_le
map_jacobson_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom.instRingHomClass
map
jacobson
β€”RingHom.instRingHomClass
le_trans
map_sInf
le_antisymm
sInf_le_sInf
le_comap_of_map_le
comap_isMaximal_of_surjective
map_comap_of_surjective
sInf_le_sInf_of_subset_insert_top
map_eq_top_or_isMaximal_of_surjective
Set.mem_insert
Set.mem_insert_of_mem
map_mono
mem_jacobson_bot πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
Bot.bot
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”mem_jacobson_iff
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
add_mul
Distrib.rightDistribClass
one_mul
sub_eq_zero
mul_right_comm
mul_comm
Submodule.mem_bot
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
mem_jacobson_iff πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”by_cases
Submodule.mem_sup
eq_top_iff_one
mem_span_singleton'
mul_assoc
mul_add_one
Distrib.leftDistribClass
neg_sub
add_sub_cancel_right
Submodule.neg_mem
exists_le_maximal
IsMaximal.out
sub_mem
LE.le.trans
le_sup_right
subset_span
mul_mem_left
add_sub_cancel_left
mem_sInf
le_trans
le_sup_left
by_contradiction
IsMaximal.exists_inv
neg_mul
sub_eq_iff_eq_add
sub_add_cancel
sub_sub_cancel
radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot πŸ“–mathematicalβ€”radical
CommRing.toCommSemiring
jacobson
CommRing.toRing
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
instHasQuotient_1
Quotient.commSemiring
Bot.bot
Quotient.semiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Quotient.instRingQuotient
Ring.toSemiring
β€”instIsTwoSided_1
Submodule.Quotient.mk_surjective
map_quotient_self
map_jacobson_of_surjective
le_of_eq
RingHom.instRingHomClass
mk_ker
map_radical_of_surjective
RingHom.ker_eq_comap_bot
comap_jacobson_of_surjective
comap_radical
radical_le_jacobson πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
radical
jacobson
CommRing.toRing
β€”le_sInf
sInf_le
IsMaximal.isPrime
radical_eq_sInf
ringJacobson_le_jacobson πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ring.jacobson
jacobson
β€”Eq.trans_le
jacobson_bot
jacobson_mono
bot_le

Ideal.IsLocal

Theorems

NameKindAssumesProvesValidatesDepends On
le_jacobson πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommRing.toRing
β€”Ideal.exists_le_maximal
le_trans
le_of_eq
Ideal.IsMaximal.eq_of_le
out
Ideal.IsMaximal.out
sInf_le
mem_jacobson_or_exists_inv πŸ“–mathematicalβ€”Ideal
Ring.toSemiring
CommRing.toRing
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommSemiring.toSemiring
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”by_cases
Submodule.mem_sup
Ideal.eq_top_iff_one
Ideal.mem_span_singleton
mul_comm
neg_sub
add_sub_cancel_right
Submodule.neg_mem
le_trans
le_sup_right
le_jacobson
le_sup_left
dvd_refl
out πŸ“–mathematicalβ€”Ideal.IsMaximal
Ring.toSemiring
CommRing.toRing
Ideal.jacobson
β€”β€”

Ideal.jacobson

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
Ring.toSemiring
Ideal.jacobson
β€”Ideal.IsMaximal.out
Ideal.jacobson_eq_top_iff
lt_of_le_of_lt
Ideal.le_jacobson

TwoSidedIdeal

Definitions

NameCategoryTheorems
jacobson πŸ“–CompOp
4 mathmath: matrix_jacobson_bot, jacobson_matrix, mem_jacobson_iff, asIdeal_jacobson

Theorems

NameKindAssumesProvesValidatesDepends On
asIdeal_jacobson πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
TwoSidedIdeal
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ideal
Ring.toSemiring
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
OrderHom.instFunLike
asIdeal
jacobson
Ideal.jacobson
β€”Ideal.ext
Ideal.asIdeal_toTwoSided
mem_jacobson_iff πŸ“–mathematicalβ€”TwoSidedIdeal
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
setLike
jacobson
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toMul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”

---

← Back to Index