Documentation Verification Report

Radical

πŸ“ Source: Mathlib/RingTheory/Jacobson/Radical.lean

Statistics

MetricCount
Definitionsjacobson, jacobson
2
Theoremscomap_jacobson_of_bijective, comap_jacobson_of_ker_le, jacobson_eq_bot_of_injective, jacobson_le_of_eq_bot, jacobson_lt_top, jacobson_pi_eq_bot, jacobson_pi_le, jacobson_quotient_jacobson, jacobson_quotient_of_le, le_comap_jacobson, map_jacobson_le, map_jacobson_of_bijective, map_jacobson_of_ker_le, coe_jacobson_quotient, instIsTwoSidedJacobson, jacobson_eq_sInf_isMaximal, jacobson_le_of_eq_bot, jacobson_le_of_isMaximal, jacobson_lt_top, jacobson_quotient_jacobson, jacobson_quotient_of_le, jacobson_smul_top_le, le_comap_jacobson, map_jacobson_le, map_jacobson_of_ker_le, eq_bot_of_le_jacobson_smul, jacobson_smul_lt, jacobson_smul_lt_top
28
Total30

Module

Definitions

NameCategoryTheorems
jacobson πŸ“–CompOp
13 mathmath: Ring.coe_jacobson_quotient, jacobson_lt_top, Ring.jacobson_smul_top_le, map_jacobson_of_bijective, jacobson_pi_le, IsSimpleModule.jacobson_eq_bot, comap_jacobson_of_bijective, IsSemisimpleModule.jacobson_le_ker, IsArtinian.isSemisimpleModule_iff_jacobson, map_jacobson_le, IsSemisimpleModule.jacobson_eq_bot, jacobson_quotient_jacobson, le_comap_jacobson

Theorems

NameKindAssumesProvesValidatesDepends On
comap_jacobson_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule.comap
jacobson
β€”comap_jacobson_of_ker_le
LinearMap.ker_eq_bot
comap_jacobson_of_ker_le πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.ker
jacobson
Submodule.comapβ€”map_jacobson_of_ker_le
Submodule.comap_map_eq_self
jacobson_eq_bot_of_injective πŸ“–β€”DFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
jacobson
Bot.bot
Submodule
Submodule.instBot
β€”β€”le_bot_iff
LE.le.trans
le_comap_jacobson
Eq.le
LinearMap.ker_eq_bot
jacobson_le_of_eq_bot πŸ“–mathematicaljacobson
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Bot.bot
Submodule.instBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”Submodule.ker_mkQ
RingHomSurjective.ids
jacobson_lt_top πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
jacobson
Top.top
Submodule.instTop
β€”IsCoatomic.eq_top_or_exists_le_coatom
bot_ne_top
Submodule.instNontrivial
LE.le.trans_lt
sInf_le
Set.mem_setOf
Ne.lt_top
jacobson_pi_eq_bot πŸ“–mathematicaljacobson
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
Pi.addCommGroup
Pi.module
β€”le_bot_iff
LE.le.trans
jacobson_pi_le
Submodule.pi_univ_bot
jacobson_pi_le πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Pi.addCommGroup
Pi.module
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
jacobson
Submodule.pi
Set.univ
β€”sInf_eq_iInf'
Submodule.comap_iInf
RingHomSurjective.ids
iInf_le_of_le
Submodule.isCoatom_comap_iff
LinearMap.proj_surjective
le_rfl
jacobson_quotient_jacobson πŸ“–mathematicalβ€”jacobson
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Bot.bot
Submodule.instBot
β€”RingHomSurjective.ids
jacobson_quotient_of_le
le_rfl
Submodule.mkQ_map_self
jacobson_quotient_of_le πŸ“–mathematicalSubmodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
jacobson
HasQuotient.Quotient
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Submodule.map
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.mkQ
β€”RingHomSurjective.ids
map_jacobson_of_ker_le
Submodule.mkQ_surjective
Submodule.ker_mkQ
le_comap_jacobson πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
jacobson
Submodule.comap
β€”jacobson.eq_1
sInf_eq_iInf'
Submodule.comap_iInf
le_iInf_iff
Submodule.isCoatom_comap_or_eq_top
Submodule.mem_sInf
Submodule.mem_top
map_jacobson_le πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
jacobson
β€”Submodule.map_le_iff_le_comap
le_comap_jacobson
map_jacobson_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule.map
jacobson
β€”map_jacobson_of_ker_le
LinearMap.ker_eq_bot
map_jacobson_of_ker_le πŸ“–mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.ker
jacobson
Submodule.mapβ€”le_antisymm
map_jacobson_le
jacobson.eq_1
sInf_eq_iInf'
Submodule.map_iInf_of_ker_le
le_iInf
sInf_le
Submodule.isCoatom_map_of_ker_le
le_iInf_iff

Ring

Definitions

NameCategoryTheorems
jacobson πŸ“–CompOp
23 mathmath: jacobson_eq_nilradical_of_krullDimLE_zero, coe_jacobson_quotient, IsSemisimpleModule.jacobson_le_annihilator, Ideal.jacobson_bot, jacobson_smul_top_le, nilradical_le_jacobson, Submodule.jacobson_smul_lt_top, IsSemiprimaryRing.isNilpotent, jacobson_le_of_isMaximal, IsSemiprimaryRing.isSemisimpleRing, map_jacobson_le, instIsTwoSidedJacobson, Ideal.ringJacobson_le_jacobson, Submodule.FG.jacobson_smul_lt, IsSemisimpleRing.jacobson_eq_bot, isSemiprimaryRing_iff, le_comap_jacobson, IsArtinianRing.isSemisimpleRing_iff_jacobson, IsSemiprimaryRing.isNoetherianRing_iff_jacobson_fg, jacobson_lt_top, IsLocalRing.ringJacobson_eq_maximalIdeal, jacobson_quotient_jacobson, jacobson_eq_sInf_isMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
coe_jacobson_quotient πŸ“–mathematicalβ€”SetLike.coe
Ideal
HasQuotient.Quotient
toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
Submodule
AddCommGroup.toAddCommMonoid
Submodule.Quotient.addCommGroup
toAddCommGroup
Submodule.Quotient.module
Module.jacobson
β€”jacobson.eq_1
Ideal.Quotient.instRingHomSurjectiveQuotientMk
Module.map_jacobson_of_ker_le
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Set.image_id
instIsTwoSidedJacobson πŸ“–mathematicalβ€”Ideal.IsTwoSided
toSemiring
jacobson
β€”Module.le_comap_jacobson
RingHomSurjective.ids
jacobson_eq_sInf_isMaximal πŸ“–mathematicalβ€”jacobson
InfSet.sInf
Ideal
toSemiring
Submodule.instInfSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
setOf
Ideal.IsMaximal
β€”β€”
jacobson_le_of_eq_bot πŸ“–mathematicaljacobson
HasQuotient.Quotient
Ideal
toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”Module.jacobson_le_of_eq_bot
le_bot_iff
SetLike.coe_subset_coe
instIsConcreteLE
coe_jacobson_quotient
jacobson_le_of_isMaximal πŸ“–mathematicalβ€”Ideal
toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
β€”jacobson_eq_sInf_isMaximal
sInf_le
jacobson_lt_top πŸ“–mathematicalβ€”Ideal
toSemiring
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
Top.top
Submodule.instTop
β€”Module.jacobson_lt_top
Ideal.instIsCoatomic
jacobson_quotient_jacobson πŸ“–mathematicalβ€”jacobson
HasQuotient.Quotient
Ideal
toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
instIsTwoSidedJacobson
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”instIsTwoSidedJacobson
Ideal.Quotient.instRingHomSurjectiveQuotientMk
jacobson_quotient_of_le
le_rfl
SetLike.ext'
RingHomSurjective.ids
SetLike.ext'_iff
Submodule.mkQ_map_self
jacobson_quotient_of_le πŸ“–mathematicalIdeal
toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
HasQuotient.Quotient
Ideal.instHasQuotient
Ideal.Quotient.ring
Submodule.map
Ideal.Quotient.instRingHomSurjectiveQuotientMk
RingHom.toSemilinearMap
β€”Ideal.Quotient.instRingHomSurjectiveQuotientMk
Module.map_jacobson_of_ker_le
Ideal.Quotient.mk_surjective
Submodule.ker_mkQ
jacobson_smul_top_le πŸ“–mathematicalβ€”Submodule
toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
jacobson
Top.top
Submodule.instTop
Module.jacobson
β€”IsScalarTower.left
Submodule.smul_le
Module.le_comap_jacobson
RingHomSurjective.ids
le_comap_jacobson πŸ“–mathematicalβ€”Ideal
toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
jacobson
Ideal.comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
β€”Module.le_comap_jacobson
map_jacobson_le πŸ“–mathematicalβ€”Submodule
toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.map
RingHom.toSemilinearMap
jacobson
β€”Module.map_jacobson_le
map_jacobson_of_ker_le πŸ“–mathematicalIdeal
toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.ker
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
jacobson
Submodule.map
RingHom.toSemilinearMap
β€”RingHom.instRingHomClass
Module.map_jacobson_of_ker_le
RingHom.surjective

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
jacobson_smul_lt_top πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Ideal
instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.jacobson
Top.top
instTop
β€”LE.le.trans_lt
IsScalarTower.left
LE.le.trans
smul_mono_right
instCovariantClassHSMulLe_1
le_top
Ring.jacobson_smul_top_le
Module.jacobson_lt_top

Submodule.FG

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_le_jacobson_smul πŸ“–mathematicalSubmodule.FG
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.jacobson
Bot.bot
Submodule.instBot
β€”IsScalarTower.left
Mathlib.Tactic.Contrapose.contrapose₁
LT.lt.not_ge
jacobson_smul_lt
jacobson_smul_lt πŸ“–mathematicalSubmodule.FG
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.jacobson
β€”IsScalarTower.left
RingHomSurjective.ids
Submodule.map_smul''
Submodule.map_top
Submodule.range_subtype
Submodule.map_strictMono_of_injective
Submodule.injective_subtype
Submodule.jacobson_smul_lt_top
Submodule.nontrivial_iff_ne_bot
Module.Finite.instIsCoatomicSubmodule
Module.Finite.iff_fg

---

← Back to Index