Ring
π Source: Mathlib/RingTheory/Jacobson/Ring.lean
Statistics
Ideal
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
radical_eq_jacobson π | mathematical | β | radicalCommRing.toCommSemiringjacobsonCommRing.toRing | β | le_antisymmle_sInfIsPrime.radical_le_iffIsMaximal.isPrimejacobson_monole_radicalIsJacobsonRing.outradical_isRadical |
IsJacobsonRing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
out π | mathematical | Ideal.IsRadicalCommRing.toCommSemiring | Ideal.jacobsonCommRing.toRing | β | isJacobsonRing_iff |
out' π | mathematical | Ideal.IsRadicalCommRing.toCommSemiring | Ideal.jacobsonCommRing.toRing | β | β |
IsLocalization
Definitions
| Name | Category | Theorems |
|---|---|---|
orderIsoOfMaximal π | CompOp | β |
Theorems
MvPolynomial
Theorems
Polynomial
Theorems
RingHom
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
finite_iff_finiteType_of_isJacobsonRing π | mathematical | β | FiniteEuclideanDomain.toCommRingField.toEuclideanDomainFiniteType | β | FiniteType.of_finitefinite_of_finite_type_of_isJacobsonRing |
finite_of_algHom_finiteType_of_isJacobsonRing π | mathematical | β | FiniteEuclideanDomain.toCommRingField.toEuclideanDomain | β | finite_of_algHom_finiteType_of_isJacobsonRing |
RingHom.FiniteType
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isJacobsonRing π | mathematical | β | IsJacobsonRing | β | isJacobsonRing_of_finiteType |
(root)
Definitions
Theorems
---