Documentation Verification Report

Ring

πŸ“ Source: Mathlib/RingTheory/Jacobson/Ring.lean

Statistics

MetricCount
DefinitionsIsJacobsonRing, orderIsoOfMaximal
2
Theoremsradical_eq_jacobson, out, out', isMaximal_iff_isMaximal_disjoint, isMaximal_of_isMaximal_disjoint, comp_C_integral_of_surjective_of_isJacobsonRing, isJacobsonRing, isJacobsonRing_MvPolynomial_fin, quotient_mk_comp_C_isIntegral_of_isJacobsonRing, comp_C_integral_of_surjective_of_isJacobsonRing, instIsJacobsonRing, isIntegral_isLocalization_polynomial_quotient, isJacobsonRing_polynomial_iff_isJacobsonRing, isJacobsonRing_polynomial_of_isJacobsonRing, isMaximal_comap_C_of_isJacobsonRing, isMaximal_comap_C_of_isMaximal, jacobson_bot_of_integral_localization, mem_closure_X_union_C, quotient_mk_comp_C_isIntegral_of_isJacobsonRing, isJacobsonRing, finite_iff_finiteType_of_isJacobsonRing, finite_of_algHom_finiteType_of_isJacobsonRing, finite_of_algHom_finiteType_of_isJacobsonRing, finite_of_finite_type_of_isJacobsonRing, instIsJacobsonRingOfIsArtinianRing, isJacobsonRing_iff, isJacobsonRing_iff_prime_eq, isJacobsonRing_iff_sInf_maximal, isJacobsonRing_iff_sInf_maximal', isJacobsonRing_iso, isJacobsonRing_localization, isJacobsonRing_of_finiteType, isJacobsonRing_of_isIntegral, isJacobsonRing_of_isIntegral', isJacobsonRing_of_surjective, isJacobsonRing_quotient
36
Total38

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
radical_eq_jacobson πŸ“–mathematicalβ€”radical
CommRing.toCommSemiring
jacobson
CommRing.toRing
β€”le_antisymm
le_sInf
IsPrime.radical_le_iff
IsMaximal.isPrime
jacobson_mono
le_radical
IsJacobsonRing.out
radical_isRadical

IsJacobsonRing

Theorems

NameKindAssumesProvesValidatesDepends On
out πŸ“–mathematicalIdeal.IsRadical
CommRing.toCommSemiring
Ideal.jacobson
CommRing.toRing
β€”isJacobsonRing_iff
out' πŸ“–mathematicalIdeal.IsRadical
CommRing.toCommSemiring
Ideal.jacobson
CommRing.toRing
β€”β€”

IsLocalization

Definitions

NameCategoryTheorems
orderIsoOfMaximal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal_iff_isMaximal_disjoint πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHom.instRingHomClass
Ideal.IsMaximal.isPrime
Set.disjoint_left
isPrime_iff_isPrime_disjoint
Submonoid.mem_powers
Mathlib.Tactic.Push.not_forall_eq
Ideal.mem_sInf
Submodule.mem_toAddSubmonoid
Ideal.jacobson.eq_1
IsJacobsonRing.out
Ideal.IsPrime.isRadical
comap_map_of_isPrime_disjoint
Ideal.disjoint_powers_iff_notMem
isPrime_of_isPrime_disjoint
Ideal.map_mono
map_comap
Ideal.IsMaximal.out
lt_of_le_of_ne
Ideal.IsPrime.ne_top'
Ideal.IsMaximal.ne_top
Ideal.eq_top_of_isUnit_mem
map_units
eq_top_iff
OrderEmbedding.le_iff_le
Ideal.comap_mono
le_of_lt
Ideal.map_top
isMaximal_of_isMaximal_disjoint πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.IsMaximal
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”RingHom.instRingHomClass
isMaximal_iff_isMaximal_disjoint
comap_map_of_isPrime_disjoint
Ideal.IsMaximal.isPrime
Ideal.disjoint_powers_iff_notMem
Ideal.IsPrime.isRadical

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
comp_C_integral_of_surjective_of_isJacobsonRing πŸ“–mathematicalMvPolynomial
CommRing.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
RingHom.IsIntegral
DivisionRing.toRing
Field.toDivisionRing
RingHom.comp
C
β€”nonempty_fintype
AlgEquiv.surjective
RingHom.instRingHomClass
RingHom.ker_isMaximal_of_surjective
Ideal.instIsTwoSided_1
ringHom_ext
RingHom.comp_assoc
RingHom.IsIntegral.trans
quotient_mk_comp_C_isIntegral_of_isJacobsonRing
RingHom.isIntegral_of_surjective
Function.Surjective.of_comp
RingHom.ext
AlgEquiv.commutes'
isJacobsonRing πŸ“–mathematicalβ€”IsJacobsonRing
MvPolynomial
CommRing.toCommSemiring
instCommRingMvPolynomial
β€”nonempty_fintype
isJacobsonRing_iso
isJacobsonRing_MvPolynomial_fin
isJacobsonRing_MvPolynomial_fin πŸ“–mathematicalβ€”IsJacobsonRing
MvPolynomial
CommRing.toCommSemiring
instCommRingMvPolynomial
β€”isJacobsonRing_iso
Fin.isEmpty'
PEmpty.instIsEmpty
Polynomial.isJacobsonRing_polynomial_iff_isJacobsonRing
quotient_mk_comp_C_isIntegral_of_isJacobsonRing πŸ“–mathematicalβ€”RingHom.IsIntegral
HasQuotient.Quotient
MvPolynomial
CommRing.toCommSemiring
Ideal
Ring.toSemiring
CommRing.toRing
instCommRingMvPolynomial
Ideal.instHasQuotient
Ideal.Quotient.instRingQuotient
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ideal.instIsTwoSided_1
C
β€”Ideal.instIsTwoSided_1

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
comp_C_integral_of_surjective_of_isJacobsonRing πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
RingHom.IsIntegral
DivisionRing.toRing
Field.toDivisionRing
RingHom.comp
C
β€”RingHom.instRingHomClass
RingHom.ker_isMaximal_of_surjective
Ideal.instIsTwoSided_1
ringHom_ext'
RingHom.comp_assoc
RingHom.IsIntegral.trans
quotient_mk_comp_C_isIntegral_of_isJacobsonRing
RingHom.isIntegral_of_surjective
Function.Surjective.of_comp
instIsJacobsonRing πŸ“–mathematicalβ€”IsJacobsonRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
β€”isJacobsonRing_polynomial_iff_isJacobsonRing
isIntegral_isLocalization_polynomial_quotient πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.IsIntegral
CommRing.toRing
IsLocalization.map
HasQuotient.Quotient
Ring.toSemiring
Ideal.instHasQuotient
Ideal.comap
RingHom
ring
RingHom.instFunLike
C
RingHom.instRingHomClass
Ideal.Quotient.commSemiring
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ideal.Quotient.semiring
leadingCoeff
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
map
commRing
Submonoid.map
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Ideal.quotientMap
le_rfl
PartialOrder.toPreorder
Submodule.instPartialOrder
Submonoid.le_comap_map
β€”RingHom.instRingHomClass
Ideal.instIsTwoSided_1
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
le_rfl
Submonoid.le_comap_map
IsLocalization.surj
IsIntegral.of_mem_closure''
RingHom.isIntegralElem_localization_at_leadingCoeff
evalβ‚‚_map
hom_evalβ‚‚
Ideal.Quotient.eq_zero_iff_mem
evalβ‚‚_C_X
pow_one
degree_le_zero_iff
monic_X_sub_C
evalβ‚‚_sub
evalβ‚‚_X
evalβ‚‚_C
sub_eq_zero
RingHom.comp_apply
IsLocalization.map_comp
Ideal.Quotient.mk_surjective
Subring.mem_closure_image_of
mem_closure_X_union_C
isUnit_iff_exists_inv'
instIsDedekindFiniteMonoid
IsLocalization.map_units
RingHom.IsIntegralElem.of_mul_unit
RingHom.map_one
RingHom.map_mul
isJacobsonRing_polynomial_iff_isJacobsonRing πŸ“–mathematicalβ€”IsJacobsonRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
β€”isJacobsonRing_of_surjective
evalβ‚‚_C
isJacobsonRing_polynomial_of_isJacobsonRing
isJacobsonRing_polynomial_of_isJacobsonRing πŸ“–mathematicalβ€”IsJacobsonRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
β€”isJacobsonRing_iff_prime_eq
Ideal.instIsTwoSided_1
SubringClass.toSubsemiringClass
Subring.instSubringClass
RingHom.rangeRestrict_surjective
RingHom.instRingHomClass
Ideal.polynomial_mem_ideal_of_coeff_mem_ideal
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Ideal.mem_comap
Ideal.Quotient.eq_zero_iff_mem
RingHom.comp_apply
coeff_map
isJacobsonRing_of_surjective
map_surjective
Ideal.map_isPrime_of_surjective
Subring.instIsDomainSubtypeMem
Ideal.Quotient.isDomain
Ideal.eq_zero_of_polynomial_mem_map_range
le_antisymm
le_trans
le_sup_of_le_left
le_rfl
le_of_eq
Ideal.comap_map_of_surjective
Ideal.map_jacobson_of_surjective
sup_le
Ideal.le_jacobson
isMaximal_comap_C_of_isJacobsonRing πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.comap
Polynomial
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
Ideal.instIsTwoSided_1
Ideal.mk_ker
RingHom.ker_eq_comap_bot
Ideal.comap_comap
Ideal.bot_quotient_isMaximal_iff
Ideal.isMaximal_comap_of_isIntegral_of_isMaximal'
quotient_mk_comp_C_isIntegral_of_isJacobsonRing
isMaximal_comap_C_of_isMaximal πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.comap
Polynomial
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
RingHom.instRingHomClass
β€”RingHom.instRingHomClass
Ideal.comap_isPrime
Ideal.IsMaximal.isPrime'
Submodule.nonzero_mem_of_bot_lt
Ideal.bot_lt_of_maximal
nontrivial
Ideal.polynomial_not_isField
Ideal.instIsTwoSided_1
le_rfl
Ideal.bot_quotient_isMaximal_iff
map_injective
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
eq_bot_iff
Ideal.Quotient.eq_zero_iff_mem
map_zero
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
Ideal.Quotient.noZeroDivisors
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Ideal.quotientMap_injective
trans
Ideal.instIsTwoSidedComap
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
RingHom.map_zero
Ideal.map_bot
Ideal.IsMaximal.map_bijective
IsField.localization_map_bijective
Ideal.Quotient.maximal_ideal_iff_isField_quotient
Localization.isLocalization
Submonoid.le_comap_map
le_antisymm
bot_le
Ideal.comap_bot_le_of_injective
IsLocalization.map_injective_of_injective
Ideal.isMaximal_comap_of_isIntegral_of_isMaximal'
isIntegral_isLocalization_polynomial_quotient
IsLocalization.comap_map_of_isPrime_disjoint
Ideal.isPrime_bot
IsDomain.toNontrivial
Ideal.Quotient.isDomain
disjoint_iff_inf_le
IsLocalization.isMaximal_iff_isMaximal_disjoint
isJacobsonRing_quotient
jacobson_bot_of_integral_localization πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.IsIntegral
CommRing.toRing
IsLocalization.map
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submonoid.map
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Submonoid.le_comap_map
Ideal.jacobson
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Submonoid.le_comap_map
map_le_nonZeroDivisors_of_injective
IsDomain.to_noZeroDivisors
powers_le_nonZeroDivisors_of_noZeroDivisors
Ideal.comap_isPrime
Ideal.IsMaximal.isPrime'
Ideal.isPrime_bot
IsDomain.toNontrivial
Ideal.instIsTwoSided_1
Ideal.Quotient.isDomain
Ideal.Quotient.noZeroDivisors
IsLocalization.map_comp
le_rfl
Ideal.isMaximal_comap_of_isIntegral_of_isMaximal'
IsLocalization.isMaximal_iff_isMaximal_disjoint
Ideal.comap_comap
Ideal.bot_quotient_isMaximal_iff
Ideal.isMaximal_of_isIntegral_of_isMaximal_comap'
RingHom.IsIntegral.tower_bot
Ideal.quotientMap_injective
Ideal.instIsTwoSidedComap
le_of_eq
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
RingHom.IsIntegral.trans
RingHom.isIntegral_of_surjective
IsLocalization.surjective_quotientMap_of_maximal_of_localization
RingHom.IsIntegral.quotient
Ideal.comp_quotientMap_eq_of_comp_eq
eq_bot_iff
Ideal.comap_bot_le_of_injective
RingHom.ker_eq_comap_bot
RingHom.injective_iff_ker_eq_bot
IsLocalization.injective
isJacobsonRing_localization
isJacobsonRing_of_isIntegral'
le_trans
IsJacobsonRing.out
Ideal.isRadical_bot_of_noZeroDivisors
IsLocalization.isDomain_of_le_nonZeroDivisors
Ideal.comap_jacobson
sInf_le_sInf
bot_le
mem_closure_X_union_C πŸ“–mathematicalβ€”Polynomial
Ring.toSemiring
Subring
ring
SetLike.instMembership
Subring.instSetLike
Subring.closure
Set
Set.instInsert
X
setOf
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”induction_on
Subring.subset_closure
Set.mem_insert_of_mem
degree_C_le
Subring.add_mem
pow_succ
mul_assoc
Subring.mul_mem
Set.mem_insert
quotient_mk_comp_C_isIntegral_of_isJacobsonRing πŸ“–mathematicalβ€”RingHom.IsIntegral
HasQuotient.Quotient
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Ring.toSemiring
ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.instRingQuotient
commRing
RingHom.comp
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
C
β€”RingHom.instRingHomClass
Ideal.comap_isPrime
Ideal.IsMaximal.isPrime'
Ideal.instIsTwoSided_1
map_surjective
Quotient.mk_surjective
Ideal.comap_map_of_surjective
le_antisymm
le_sup_of_le_left
le_rfl
sup_le
Ideal.polynomial_mem_ideal_of_coeff_mem_ideal
Ideal.Quotient.eq_zero_iff_mem
coeff_map
ext_iff
RingHom.IsIntegral.tower_bot
Ideal.le_comap_map
Ideal.injective_quotient_le_comap_map
Ideal.quotient_mk_maps_eq
RingHom.IsIntegral.trans
RingHom.isIntegral_of_surjective
Ideal.map_eq_top_or_isMaximal_of_surjective
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
Ideal.comap_top
Ideal.IsMaximal.ne_top
IsDomain.toNontrivial
Ideal.Quotient.isDomain
isJacobsonRing_quotient
Ideal.Quotient.mk_surjective
Ideal.mem_comap
coe_mapRingHom
map_C

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
finite_iff_finiteType_of_isJacobsonRing πŸ“–mathematicalβ€”Finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
FiniteType
β€”FiniteType.of_finite
finite_of_finite_type_of_isJacobsonRing
finite_of_algHom_finiteType_of_isJacobsonRing πŸ“–mathematicalβ€”Finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”finite_of_algHom_finiteType_of_isJacobsonRing

RingHom.FiniteType

Theorems

NameKindAssumesProvesValidatesDepends On
isJacobsonRing πŸ“–mathematicalβ€”IsJacobsonRingβ€”isJacobsonRing_of_finiteType

(root)

Definitions

NameCategoryTheorems
IsJacobsonRing πŸ“–CompData
20 mathmath: MvPolynomial.isJacobsonRing, Polynomial.isJacobsonRing_polynomial_iff_isJacobsonRing, isJacobsonRing_of_isIntegral, isJacobsonRing_iff_prime_eq, isJacobsonRing_iso, isJacobsonRing_iff_sInf_maximal, instIsJacobsonRingOfIsArtinianRing, isJacobsonRing_of_surjective, RingHom.FiniteType.isJacobsonRing, Polynomial.isJacobsonRing_polynomial_of_isJacobsonRing, instIsJacobsonRingOfKrullDimLEOfNatNat, Polynomial.instIsJacobsonRing, isJacobsonRing_quotient, isJacobsonRing_iff_sInf_maximal', isJacobsonRing_of_isIntegral', MvPolynomial.isJacobsonRing_MvPolynomial_fin, isJacobsonRing_of_finiteType, isJacobsonRing_iff, PrimeSpectrum.isJacobsonRing_iff_jacobsonSpace, isJacobsonRing_localization

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_algHom_finiteType_of_isJacobsonRing πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
Algebra.toModule
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
β€”Ideal.exists_maximal
finite_of_finite_type_of_isJacobsonRing
Algebra.FiniteType.quotient
Module.Finite.of_injective
Ideal.instIsTwoSided_1
isNoetherian_of_isNoetherianRing_of_finite
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
finite_of_finite_type_of_isJacobsonRing πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Algebra.FiniteType.iff_quotient_mvPolynomial'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
MvPolynomial.comp_C_integral_of_surjective_of_isJacobsonRing
Finite.of_fintype
Algebra.isIntegral_def
Algebra.IsIntegral.finite
instIsJacobsonRingOfIsArtinianRing πŸ“–mathematicalβ€”IsJacobsonRingβ€”isJacobsonRing_iff_prime_eq
Ideal.jacobson_eq_self_of_isMaximal
IsArtinianRing.isMaximal_of_isPrime
isJacobsonRing_iff πŸ“–mathematicalβ€”IsJacobsonRing
Ideal.jacobson
CommRing.toRing
β€”IsJacobsonRing.out'
isJacobsonRing_iff_prime_eq πŸ“–mathematicalβ€”IsJacobsonRing
Ideal.jacobson
CommRing.toRing
β€”isJacobsonRing_iff
Ideal.IsPrime.isRadical
le_antisymm
Ideal.IsRadical.radical
Ideal.radical_eq_sInf
Ideal.mem_sInf
Set.mem_setOf_eq
Ideal.jacobson.eq_1
le_trans
isJacobsonRing_iff_sInf_maximal πŸ“–mathematicalβ€”IsJacobsonRing
Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
InfSet.sInf
Submodule.instInfSet
β€”Ideal.eq_jacobson_iff_sInf_maximal
IsJacobsonRing.out
Ideal.IsPrime.isRadical
isJacobsonRing_iff_prime_eq
isJacobsonRing_iff_sInf_maximal' πŸ“–mathematicalβ€”IsJacobsonRing
Top.top
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
InfSet.sInf
Submodule.instInfSet
β€”Ideal.eq_jacobson_iff_sInf_maximal'
IsJacobsonRing.out
Ideal.IsPrime.isRadical
isJacobsonRing_iff_prime_eq
isJacobsonRing_iso πŸ“–mathematicalβ€”IsJacobsonRingβ€”isJacobsonRing_of_surjective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.surjective
isJacobsonRing_localization πŸ“–mathematicalβ€”IsJacobsonRingβ€”isJacobsonRing_iff_prime_eq
le_antisymm
RingHom.instRingHomClass
IsLocalization.isPrime_iff_isPrime_disjoint
IsJacobsonRing.out
Ideal.IsPrime.isRadical
LE.le.trans
Eq.ge
IsLocalization.map_comap
Ideal.map_mono
Ideal.jacobson.eq_1
Ideal.mem_sInf
Ideal.mul_mem_left
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
Ideal.IsPrime.mem_or_mem
Disjoint.le_bot
Submonoid.mem_powers
le_trans
Ideal.comap_sInf'
sInf_eq_iInf
iInf_le_iInf_of_subset
le_of_eq
IsLocalization.isMaximal_of_isMaximal_disjoint
IsLocalization.comap_map_of_isPrime_disjoint
Ideal.IsMaximal.isPrime
Ideal.disjoint_powers_iff_notMem
Eq.le
Ideal.le_jacobson
isJacobsonRing_of_finiteType πŸ“–mathematicalβ€”IsJacobsonRingβ€”Algebra.FiniteType.iff_quotient_mvPolynomial'
isJacobsonRing_of_surjective
MvPolynomial.isJacobsonRing
Finite.of_fintype
isJacobsonRing_of_isIntegral πŸ“–mathematicalβ€”IsJacobsonRingβ€”isJacobsonRing_iff_prime_eq
RingHom.instRingHomClass
Ideal.comap_eq_top_iff
Ideal.jacobson_top
Ideal.Quotient.nontrivial_iff
Ideal.jacobson_eq_iff_jacobson_quotient_eq_bot
Ideal.eq_bot_of_comap_eq_bot
Ideal.Quotient.isDomain
Ideal.instIsTwoSided_1
Algebra.IsIntegral.quotient
eq_bot_iff
Ideal.comap_isPrime
Ideal.comap_jacobson
sInf_le_sInf
Ideal.exists_ideal_over_maximal_of_isIntegral
Ideal.comap_bot_le_of_injective
Ideal.algebraMap_quotient_injective
isJacobsonRing_of_isIntegral' πŸ“–mathematicalRingHom.IsIntegral
CommRing.toRing
IsJacobsonRingβ€”isJacobsonRing_of_isIntegral
isJacobsonRing_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
IsJacobsonRingβ€”isJacobsonRing_iff_sInf_maximal
RingHom.instRingHomClass
Ideal.map_eq_top_or_isMaximal_of_surjective
Ideal.map_comap_of_surjective
IsJacobsonRing.out'
Ideal.IsRadical.comap
Ideal.IsPrime.isRadical
Ideal.map_sInf
le_trans
Ideal.ker_le_comap
isJacobsonRing_quotient πŸ“–mathematicalβ€”IsJacobsonRing
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
β€”isJacobsonRing_of_surjective
Ideal.instIsTwoSided_1

---

← Back to Index