| Name | Category | Theorems |
D 📖 | CompOp | 60 mathmath: kerCotangentToTensor_toCotangent, mvPolynomialBasis_apply, polynomialEquiv_symm, tensorKaehlerEquiv_symm_D_tmul', Algebra.Generators.cotangentSpaceBasis_apply, mvPolynomialBasis_repr_D_X, tensorKaehlerEquiv_symm_D_tmul, polynomialEquiv_D, kerToTensor_apply, quotKerTotalEquiv_symm_comp_D, Algebra.Generators.cotangentSpaceBasis_repr_one_tmul, Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply, kerTotal_eq, Algebra.Generators.H1Cotangent.δAux_C, Algebra.Extension.CotangentSpace.map_tmul, polynomialEquiv_comp_D, span_range_map_derivation_of_isLocalization, linearMapEquivDerivation_apply_apply, span_range_derivation, Algebra.Generators.H1Cotangent.δAux_monomial, Algebra.Generators.cotangentSpaceBasis_repr_tmul, Algebra.Extension.Hom.sub_one_tmul, Algebra.Generators.H1Cotangent.δAux_toAlgHom, D_apply, Derivation.liftKaehlerDifferential_comp, ker_map, tensorKaehlerQuotKerSqEquiv_symm_tmul_D, Derivation.liftKaehlerDifferential_comp_D, Algebra.Generators.H1Cotangent.δAux_ofComp, Algebra.Presentation.differentials.comm₂₃', sectionOfRetractionKerToTensorAux_prop, Derivation.liftKaehlerDifferential_unique_iff, Derivation.liftKaehlerDifferential_D, tensorKaehlerQuotKerSqEquiv_tmul_D, mvPolynomialBasis_repr_apply, Algebra.Generators.toKaehler_tmul_D, sectionOfRetractionKerToTensor_algebraMap, map_compDer, D_tensorProductTo, derivationQuotKerTotal_lift_comp_linearCombination, Algebra.Generators.toKaehler_cotangentSpaceBasis, Algebra.SubmersivePresentation.basisKaehler_apply, polynomial_D_apply, derivationTensorProduct_algebraMap, tensorProductTo_surjective, sectionOfRetractionKerToTensorAux_algebraMap, mvPolynomialBasis_repr_D, ker_map_of_surjective, tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap, mvPolynomialBasis_repr_comp_D, Algebra.Extension.Hom.sub_tmul, mvPolynomialBasis_repr_symm_single, Algebra.IsStandardSmooth.iff_exists_basis_kaehlerDifferential, map_D, tensorKaehlerEquiv_tmul_D, quotKerTotalEquiv_apply, Algebra.Extension.cotangentComplex_mk, retractionOfSectionOfKerSqZero_tmul_D, linearCombination_surjective, derivationQuotKerSq_mk
|
DLinearMap 📖 | CompOp | 1 mathmath: DLinearMap_apply
|
derivationQuotKerTotal 📖 | CompOp | 4 mathmath: quotKerTotalEquiv_symm_comp_D, derivationQuotKerTotal_apply, derivationQuotKerTotal_lift_comp_linearCombination, quotKerTotalEquiv_symm_apply
|
endEquiv 📖 | CompOp | — |
endEquivAuxEquiv 📖 | CompOp | — |
endEquivDerivation' 📖 | CompOp | — |
fromIdeal 📖 | CompOp | — |
ideal 📖 | CompOp | 9 mathmath: ideal_fg, End_equiv_aux, D_apply, one_smul_sub_smul_one_mem_ideal, submodule_span_range_eq_ideal, D_tensorProductTo, span_range_eq_ideal, Derivation.liftKaehlerDifferential_apply, DLinearMap_apply
|
kerCotangentToTensor 📖 | CompOp | 5 mathmath: kerCotangentToTensor_toCotangent, exact_kerCotangentToTensor_mapBaseChange, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, range_kerCotangentToTensor, Algebra.FormallySmooth.iff_split_injection
|
kerToTensor 📖 | CompOp | 3 mathmath: cotangentComplexBaseChange_tmul, kerToTensor_apply, retractionOfSectionOfKerSqZero_comp_kerToTensor
|
kerTotal 📖 | CompOp | 14 mathmath: quotKerTotalEquiv_symm_comp_D, kerTotal_eq, kerTotal_mkQ_single_algebraMap_one, kerTotal_mkQ_single_add, ker_map, derivationQuotKerTotal_apply, kerTotal_map, kerTotal_mkQ_single_mul, derivationQuotKerTotal_lift_comp_linearCombination, kerTotal_mkQ_single_smul, quotKerTotalEquiv_symm_apply, quotKerTotalEquiv_apply, kerTotal_map', kerTotal_mkQ_single_algebraMap
|
linearMapEquivDerivation 📖 | CompOp | 2 mathmath: linearMapEquivDerivation_apply_apply, linearMapEquivDerivation_symm_apply
|
map 📖 | CompOp | 19 mathmath: isLocalizedModule_of_isLocalizedModule, mapBaseChange_tmul, span_range_map_derivation_of_isLocalization, tensorKaehlerEquivBase_tmul, isLocalizedModule_map, exact_mapBaseChange_map, tensorKaehlerEquiv_tmul, range_mapBaseChange, ker_map, map_surjective_of_surjective, tensorKaehlerEquiv_left_inv, isBaseChange, map_surjective, map_compDer, isLocalizedModule, ker_map_of_surjective, isBaseChange_of_formallyEtale, map_D, map_liftBaseChange_smul
|
mapBaseChange 📖 | CompOp | 9 mathmath: mapBaseChange_tmul, tensorKaehlerEquivOfFormallyEtale_apply, exact_mapBaseChange_map, range_mapBaseChange, Algebra.Generators.H1Cotangent.exact_δ_map, mapBaseChange_surjective, exact_kerCotangentToTensor_mapBaseChange, range_kerCotangentToTensor, Algebra.H1Cotangent.exact_δ_mapBaseChange
|
module' 📖 | CompOp | 162 mathmath: kerCotangentToTensor_toCotangent, mvPolynomialBasis_apply, Algebra.Presentation.differentials.comm₁₂_single, Algebra.Generators.H1Cotangent.δAux_mul, Algebra.Presentation.differentialsSolution_isPresentation, polynomialEquiv_symm, Algebra.Extension.H1Cotangent.equiv_apply, tensorKaehlerEquiv_symm_D_tmul', Algebra.Generators.cotangentSpaceBasis_apply, mvPolynomialBasis_repr_D_X, tensorKaehlerEquiv_symm_D_tmul, Algebra.FormallySmooth.projective_kaehlerDifferential, Algebra.Presentation.differentials.comm₂₃, cotangentComplexBaseChange_tmul, Algebra.Extension.formallySmooth_iff_split_injection, polynomialEquiv_D, Algebra.FormallySmooth.instFinitePresentationKaehlerDifferentialOfEssFiniteType, Algebra.Extension.CotangentSpace.map_id, kerToTensor_apply, isScalarTower', quotKerTotalEquiv_symm_comp_D, Algebra.Extension.lTensor_cotangentComplex_eq_cotangentComplexBaseChange, isLocalizedModule_of_isLocalizedModule, Algebra.Generators.cotangentSpaceBasis_repr_one_tmul, instIsScalarTowerTensorProduct, Algebra.SubmersivePresentation.basisKaehlerOfIsCompl_apply, retractionOfSectionOfKerSqZero_comp_kerToTensor, mapBaseChange_tmul, kerTotal_eq, Algebra.Generators.H1Cotangent.δAux_C, Algebra.FormallySmooth.iff_injective_cotangentComplexBaseChange_residueField, Algebra.Extension.subsingleton_h1Cotangent, Algebra.Extension.CotangentSpace.map_tmul, polynomialEquiv_comp_D, span_range_map_derivation_of_isLocalization, Algebra.Extension.H1Cotangent.val_zero, mulActionBaseChange_smul_add, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Algebra.IsStandardSmoothOfRelativeDimension.iff_of_isStandardSmooth, linearMapEquivDerivation_apply_apply, tensorKaehlerEquivBase_tmul, Algebra.FormallySmooth.iff_subsingleton_and_projective, tensorKaehlerEquivBase_symm_apply, isLocalizedModule_map, isScalarTower_of_tower, tensorKaehlerEquivOfFormallyEtale_apply, linearMapEquivDerivation_symm_apply, span_range_derivation, Algebra.Generators.H1Cotangent.exact_map_δ, Algebra.Generators.H1Cotangent.δAux_monomial, Algebra.Generators.CotangentSpace.compEquiv_symm_zero, Algebra.Generators.cotangentSpaceBasis_repr_tmul, Algebra.Extension.Hom.sub_one_tmul, exact_mapBaseChange_map, tensorKaehlerEquiv_tmul, Algebra.Generators.H1Cotangent.δAux_toAlgHom, D_apply, Algebra.Extension.CotangentSpace.map_toInfinitesimal_bijective, range_mapBaseChange, Algebra.SubmersivePresentation.sectionCotangent_eq_iff, Algebra.Generators.H1Cotangent.exact_δ_map, Derivation.liftKaehlerDifferential_comp, ker_map, mapBaseChange_surjective, Algebra.Extension.CotangentSpace.map_sub_map, map_surjective_of_surjective, Algebra.unramifiedLocus_eq_compl_support, finite, Algebra.Extension.CotangentSpace.map_cotangentComplex, Algebra.Extension.cotangentComplexBaseChange_eq_lTensor_cotangentComplex, tensorKaehlerQuotKerSqEquiv_symm_tmul_D, Derivation.liftKaehlerDifferential_comp_D, Algebra.Generators.H1Cotangent.δAux_ofComp, Algebra.Presentation.differentials.comm₂₃', instSMulCommClassTensorProduct_1, tensorKaehlerEquiv_left_inv, Derivation.liftKaehlerDifferential_unique_iff, Derivation.liftKaehlerDifferential_D, tensorKaehlerQuotKerSqEquiv_tmul_D, isBaseChange, instSMulCommClassTensorProduct, mvPolynomialBasis_repr_apply, Algebra.Extension.h1Cotangentι_ext_iff, Algebra.Generators.toKaehler_tmul_D, exact_kerCotangentToTensor_mapBaseChange, Algebra.Extension.H1Cotangent.val_add, Algebra.Extension.H1Cotangent.val_smul, Algebra.Presentation.differentials.comm₁₂, map_surjective, map_compDer, Algebra.SubmersivePresentation.free_kaehlerDifferential, Algebra.Generators.H1Cotangent.exact_map_δ', D_tensorProductTo, Algebra.Extension.toKaehler_surjective, Algebra.Generators.CotangentSpace.exact, Algebra.Generators.H1Cotangent.δAux_X, derivationQuotKerTotal_lift_comp_linearCombination, Algebra.Generators.repr_CotangentSpaceMap, isLocalizedModule, Algebra.Extension.H1Cotangent.map_apply_coe, Algebra.Generators.toKaehler_cotangentSpaceBasis, Algebra.SubmersivePresentation.basisKaehler_apply, polynomial_D_apply, Algebra.Generators.CotangentSpace.compEquiv_symm_inr, quotKerTotalEquiv_symm_apply, Algebra.FormallySmooth.kerCotangentToTensor_injective_iff, derivationTensorProduct_algebraMap, tensorProductTo_surjective, Algebra.Extension.h1Cotangentι_apply, Algebra.Extension.cotangentComplex_injective_iff, mvPolynomialBasis_repr_D, ker_map_of_surjective, tensorKaehlerEquivOfFormallyEtale_symm_D_algebraMap, mvPolynomialBasis_repr_comp_D, Algebra.Generators.CotangentSpace.map_toComp_injective, Algebra.IsStandardSmooth.free_kaehlerDifferential, Algebra.Extension.Hom.sub_tmul, Algebra.SubmersivePresentation.rank_kaehlerDifferential, Algebra.SubmersivePresentation.sectionCotangent_comp, Algebra.formallySmooth_iff, isBaseChange_of_formallyEtale, Algebra.H1Cotangent.exact_map_δ, Algebra.Generators.H1Cotangent.δ_comp_equiv, mvPolynomialBasis_repr_symm_single, Algebra.IsStandardSmooth.iff_exists_basis_kaehlerDifferential, Algebra.SubmersivePresentation.sectionCotangent_zero_of_notMem_range, range_kerCotangentToTensor, map_D, Derivation.liftKaehlerDifferential_apply, Algebra.Generators.instFreeCotangentSpaceToExtension, instIsScalarTowerTensorProduct_1, DLinearMap_apply, Algebra.FormallySmooth.iff_injective_cotangentComplexBaseChange, Algebra.Generators.CotangentSpace.fst_compEquiv_apply, tensorKaehlerEquiv_tmul_D, Algebra.IsStandardSmoothOfRelativeDimension.rank_kaehlerDifferential, Algebra.smoothLocus_eq_compl_support_inter, Algebra.SubmersivePresentation.cotangentComplex_injective, mulActionBaseChange_smul_zero, Algebra.Extension.CotangentSpace.map_comp, Algebra.Extension.exact_cotangentComplex_toKaehler, Algebra.Generators.CotangentSpace.map_ofComp_surjective, map_liftBaseChange_smul, Algebra.Generators.H1Cotangent.map_comp_cotangentComplex_baseChange, quotKerTotalEquiv_apply, Algebra.Generators.CotangentSpace.fst_compEquiv, Algebra.Extension.CotangentSpace.map_comp_apply, Algebra.Generators.H1Cotangent.equiv_apply, Algebra.Extension.CotangentSpace.map_comp_cotangentComplex, instFreeMvPolynomialKaehlerDifferential, Algebra.H1Cotangent.exact_δ_mapBaseChange, instIsScalarTowerTensorProduct_2, Algebra.Generators.H1Cotangent.δ_map, Algebra.Extension.Cotangent.map_sub_map, mulActionBaseChange_smul_tmul, Algebra.FormallySmooth.iff_split_injection, Algebra.etaleLocus_eq_compl_support, Algebra.instFinitePresentationKaehlerDifferentialOfFinitePresentation, Algebra.Extension.cotangentComplex_mk, retractionOfSectionOfKerSqZero_tmul_D, linearCombination_surjective, derivationQuotKerSq_mk
|
quotKerTotalEquiv 📖 | CompOp | 3 mathmath: quotKerTotalEquiv_symm_comp_D, quotKerTotalEquiv_symm_apply, quotKerTotalEquiv_apply
|
quotientCotangentIdeal 📖 | CompOp | — |
quotientCotangentIdealRingEquiv 📖 | CompOp | — |