Documentation Verification Report

Basic

📁 Source: Mathlib/RingTheory/KrullDimension/Basic.lean

Statistics

MetricCount
DefinitionsFiniteRingKrullDim, KrullDimLE, ringKrullDim
3
TheoremsisMaximal', isMaximal_iff_isPrime, isMaximal_of_isPrime, mem_minimalPrimes_iff_isPrime, mem_minimalPrimes_of_krullDimLE_zero, of_finiteRingKrullDim, mk₀, mk₁, mk₁', jacobson_eq_nilradical_of_krullDimLE_zero, krullDimLE_iff, krullDimLE_one_iff, krullDimLE_one_iff_of_isPrime_bot, krullDimLE_one_iff_of_noZeroDivisors, krullDimLE_zero_iff, ringKrullDim, finiteRingKrullDim_iff_ne_bot_and_top, instIsMaximalOfIsPrimeOfKrullDimLEOfNatNat, instKrullDimLEOfNatNat, nilradical_le_jacobson, ringKrullDim_eq_bot_of_subsingleton, ringKrullDim_eq_of_ringEquiv, ringKrullDim_le_of_surjective, ringKrullDim_lt_top, ringKrullDim_ne_bot, ringKrullDim_ne_top, ringKrullDim_nonneg_of_nontrivial, ringKrullDim_quotient_le
28
Total31

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal_iff_isPrime 📖mathematicalIsMaximal
CommSemiring.toSemiring
IsPrime
IsMaximal.isPrime
instIsMaximalOfIsPrimeOfKrullDimLEOfNatNat
isMaximal_of_isPrime 📖mathematicalIsMaximal
CommSemiring.toSemiring
Ring.krullDimLE_zero_iff
mem_minimalPrimes_iff_isPrime 📖mathematicalIdeal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
IsPrime
mem_minimalPrimes_of_krullDimLE_zero
mem_minimalPrimes_of_krullDimLE_zero 📖mathematicalIdeal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
Eq.ge
IsMaximal.eq_of_le
instIsMaximalOfIsPrimeOfKrullDimLEOfNatNat
IsPrime.ne_top'
minimalPrimes_eq_minimals

Ideal.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal' 📖mathematicalIdeal.IsMaximal
CommSemiring.toSemiring
Ideal.isMaximal_of_isPrime

Nontrivial

Theorems

NameKindAssumesProvesValidatesDepends On
of_finiteRingKrullDim 📖mathematicalNontrivialPrimeSpectrum.nonempty_iff_nontrivial
LTSeries.nonempty_of_finiteDimensionalOrder

Ring

Definitions

NameCategoryTheorems
KrullDimLE 📖MathDef
19 mathmath: PrimeSpectrum.discreteTopology_iff_finite_and_krullDimLE_zero, krullDimLE_iff, KrullDimLE.mk₁', IsPrincipalIdealRing.krullDimLE_one, krullDimLE_zero_and_isLocalRing_tfae, ringKrullDimZero_iff_ringKrullDim_eq_zero, isArtinianRing_iff_isNoetherianRing_krullDimLE_zero, KrullDimLE.mk₀, krullDimLE_one_iff_of_noZeroDivisors, krullDimLE_zero_iff, krullDimLE_one_iff, KrullDimLE.of_isMaximal_nilradical, KrullDimLE.of_isLocalization, PrimeSpectrum.instKrullDimLEOfNatNat, Module.finite_iff_krullDimLE_zero, KrullDimLE.mk₁, isArtinianRing_iff_krullDimLE_zero, krullDimLE_one_iff_of_isPrime_bot, instKrullDimLEOfNatNat

Theorems

NameKindAssumesProvesValidatesDepends On
jacobson_eq_nilradical_of_krullDimLE_zero 📖mathematicaljacobson
CommRing.toRing
nilradical
CommRing.toCommSemiring
LE.le.antisymm'
nilradical_le_jacobson
le_sInf
sInf_le
Ideal.IsMaximal.out
instIsMaximalOfIsPrimeOfKrullDimLEOfNatNat
nilradical_eq_sInf
krullDimLE_iff 📖mathematicalKrullDimLE
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Order.krullDimLE_iff
krullDimLE_one_iff 📖mathematicalKrullDimLE
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
Ideal.IsMaximal
Nat.cast_one
Equiv.forall_congr_left
krullDimLE_one_iff_of_isPrime_bot 📖mathematicalKrullDimLE
Ideal.IsMaximal
CommSemiring.toSemiring
Nat.cast_one
bot_le
Equiv.forall_congr_left
krullDimLE_one_iff_of_noZeroDivisors 📖mathematicalKrullDimLE
Ideal.IsMaximal
CommSemiring.toSemiring
subsingleton_or_nontrivial
instKrullDimLEOfNatNat
Order.instKrullDimLEOfNatNatOfSubsingleton
IsEmpty.instSubsingleton
PrimeSpectrum.instIsEmptyOfSubsingleton
Unique.instSubsingleton
krullDimLE_one_iff_of_isPrime_bot
Ideal.isPrime_bot
krullDimLE_zero_iff 📖mathematicalKrullDimLE
Ideal.IsMaximal
CommSemiring.toSemiring
Nat.cast_zero
Equiv.forall_congr_left

Ring.KrullDimLE

Theorems

NameKindAssumesProvesValidatesDepends On
mk₀ 📖mathematicalIdeal.IsMaximal
CommSemiring.toSemiring
Ring.KrullDimLERing.krullDimLE_zero_iff
mk₁ 📖mathematicalIdeal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
Ideal.IsMaximal
Ring.KrullDimLERing.krullDimLE_one_iff
mk₁' 📖mathematicalIdeal.IsMaximal
CommSemiring.toSemiring
Ring.KrullDimLERing.krullDimLE_one_iff_of_isPrime_bot
mk₀
instKrullDimLEOfNatNat

RingEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
ringKrullDim 📖mathematicalringKrullDimringKrullDim_eq_of_ringEquiv

(root)

Definitions

NameCategoryTheorems
FiniteRingKrullDim 📖MathDef
2 mathmath: instFiniteRingKrullDimOfIsNoetherianRingOfIsLocalRing, finiteRingKrullDim_iff_ne_bot_and_top
ringKrullDim 📖CompOp
57 mathmath: ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim, ringKrullDim_succ_le_ringKrullDim_polynomial, Ring.krullDimLE_iff, ringKrullDim_eq_one_iff_of_isLocalRing_isDomain, Module.supportDim_eq_ringKrullDim_quotient_annihilator, Ideal.sup_primeHeight_eq_ringKrullDim, ringKrullDim_quotient, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson, ringKrullDim_succ_le_ringKrullDim_powerseries, Ideal.primeHeight_eq_ringKrullDim_iff, ringKrullDim_eq_of_ringEquiv, ringKrullDim_quotSMulTop_succ_eq_ringKrullDim, ringKrullDim_nonneg_of_nontrivial, ringKrullDimZero_iff_ringKrullDim_eq_zero, Module.supportDim_self_eq_ringKrullDim, ringKrullDim_quotient_le, ringKrullDim_succ_le_of_surjective, Ideal.exists_isMaximal_height, Ideal.primeHeight_le_ringKrullDim, ringKrullDim_eq_bot_of_subsingleton, Ideal.sup_primeHeight_of_maximal_eq_ringKrullDim, ringKrullDim_le_iff_height_le, ringKrullDim_le_ringKrullDim_quotient_add_card, Ideal.height_le_ringKrullDim_quotient_add_one, ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank, ringKrullDim_add_length_eq_ringKrullDim_of_isRegular, IsLocalization.AtPrime.ringKrullDim_eq_height, Ideal.height_le_ringKrullDim_quotient_add_encard, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors, ringKrullDim_quotient_succ_le_of_nonZeroDivisor, ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson, IsPrincipalIdealRing.ringKrullDim_eq_one, ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial, ringKrullDim_eq_zero_of_isField, ringKrullDim_le_iff_isMaximal_height_le, ringKrullDim_le_ringKrullDim_add_card, Module.supportDim_le_ringKrullDim, ringKrullDim_lt_top, Polynomial.ringKrullDim_le, PrimeSpectrum.topologicalKrullDim_eq_ringKrullDim, IsLocalRing.maximalIdeal_primeHeight_eq_ringKrullDim, ringKrullDim_nat, Ideal.sup_height_eq_ringKrullDim, height_le_ringKrullDim_quotient_add_spanFinrank, ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial, Module.supportDim_quotient_eq_ringKrullDim, ringKrullDim_le_ringKrullDim_add_spanFinrank, IsLocalRing.maximalIdeal_height_eq_ringKrullDim, ringKrullDim_eq_zero_of_field, Polynomial.ringKrullDim_of_isNoetherianRing, MvPolynomial.ringKrullDim_of_isNoetherianRing, Ideal.height_le_ringKrullDim_of_ne_top, ringKrullDim_le_of_surjective, ringKrullDim_le_ringKrullDim_quotSMulTop_succ, RingEquiv.ringKrullDim, ringKrullDim_mvPolynomial_of_isEmpty, ringKrullDim_le_ringKrullDim_quotient_add_encard

Theorems

NameKindAssumesProvesValidatesDepends On
finiteRingKrullDim_iff_ne_bot_and_top 📖mathematicalFiniteRingKrullDimOrder.finiteDimensionalOrder_iff_krullDim_ne_bot_and_top
instIsMaximalOfIsPrimeOfKrullDimLEOfNatNat 📖mathematicalIdeal.IsMaximal
CommSemiring.toSemiring
Ideal.isMaximal_of_isPrime
instKrullDimLEOfNatNat 📖mathematicalRing.KrullDimLEOrder.KrullDimLE.mono
zero_le_one
Nat.instZeroLEOneClass
nilradical_le_jacobson 📖mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
nilradical
Ring.jacobson
CommRing.toRing
le_sInf
sInf_le
Ideal.IsMaximal.isPrime
nilradical_eq_sInf
ringKrullDim_eq_bot_of_subsingleton 📖mathematicalringKrullDim
Bot.bot
WithBot
ENat
WithBot.bot
Order.krullDim_eq_bot
PrimeSpectrum.instIsEmptyOfSubsingleton
ringKrullDim_eq_of_ringEquiv 📖mathematicalringKrullDimle_antisymm
ringKrullDim_le_of_surjective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.surjective
ringKrullDim_le_of_surjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
Order.krullDim_le_of_strictMono
RingHom.instRingHomClass
Ideal.IsPrime.comap
PrimeSpectrum.isPrime
Monotone.strictMono_of_injective
Ideal.comap_mono
PrimeSpectrum.ext_iff
Ideal.comap_injective_of_surjective
ringKrullDim_lt_top 📖mathematicalWithBot
ENat
Preorder.toLT
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
Top.top
WithBot.instTop
instTopENat
Ne.lt_top
ringKrullDim_ne_top
ringKrullDim_ne_bot 📖Order.krullDim_ne_bot_of_finiteDimensionalOrder
ringKrullDim_ne_top 📖Order.krullDim_ne_top_of_finiteDimensionalOrder
ringKrullDim_nonneg_of_nontrivial 📖mathematicalWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.zero
instZeroENat
ringKrullDim
Order.krullDim_nonneg
PrimeSpectrum.instNonemptyOfNontrivial
ringKrullDim_quotient_le 📖mathematicalWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ringKrullDim
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.commSemiring
ringKrullDim_le_of_surjective
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective

---

← Back to Index