Documentation Verification Report

LocalRing

📁 Source: Mathlib/RingTheory/KrullDimension/LocalRing.lean

Statistics

MetricCount
Definitions0
TheoremsringKrullDim_eq_one_iff_of_isLocalRing_isDomain
1
Total1

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
ringKrullDim_eq_one_iff_of_isLocalRing_isDomain 📖mathematicalringKrullDim
CommRing.toCommSemiring
WithBot
ENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsField
Ideal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
Ideal.radical
Ideal.span
Set
Set.instSingletonSet
zero_ne_one
NeZero.charZero_one
WithBot.charZero
ringKrullDim_eq_zero_of_isField
Ideal.radical_eq_sInf
le_sInf
Ring.krullDimLE_one_iff_of_noZeroDivisors
IsDomain.to_noZeroDivisors
Ring.krullDimLE_iff
Nat.cast_one
le_of_eq
IsLocalRing.eq_maximalIdeal
Ring.KrullDimLE.isField_of_isDomain
by_contradiction
le_antisymm
bot_le
le_trans
Ideal.IsRadical.radical_le_iff
Ideal.IsPrime.isRadical
Ideal.span_singleton_le_iff_mem
Ideal.IsMaximal.eq_of_le
IsLocalRing.maximalIdeal.isMaximal
Ideal.IsPrime.ne_top
Order.succ_le_of_lt
lt_of_not_ge

---

← Back to Index