📁 Source: Mathlib/RingTheory/KrullDimension/NonZeroDivisors.lean
ringKrullDim_add_enatCard_le_ringKrullDim_mvPolynomial
ringKrullDim_add_natCard_le_ringKrullDim_mvPolynomial
ringKrullDim_mvPolynomial_of_isEmpty
ringKrullDim_quotient
ringKrullDim_quotient_succ_le_of_nonZeroDivisor
ringKrullDim_succ_le_of_surjective
ringKrullDim_succ_le_ringKrullDim_polynomial
ringKrullDim_succ_le_ringKrullDim_powerseries
WithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ringKrullDim
CommRing.toCommSemiring
WithBot.some
ENat.card
MvPolynomial
MvPolynomial.commSemiring
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
ringKrullDim_eq_bot_of_subsingleton
Unique.instSubsingleton
finite_or_infinite
ENat.card_eq_coe_natCard
ENat.card_eq_top_of_infinite
WithBot.eq_top_iff_forall_ge
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Function.invFun_surjective
Function.Embedding.inj'
Fin.val_injective
le_trans
Nat.card_eq_fintype_card
Fintype.card_fin
Nat.cast_add
Nat.cast_one
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithTop.zeroLEOneClass
Nat.instZeroLEOneClass
WithTop.charZero
Nat.instCharZero
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
WithBot.le_add_self
LT.lt.ne'
Order.bot_lt_krullDim
PrimeSpectrum.instNonemptyOfNontrivial
Finite.of_fintype
ringKrullDim_le_of_surjective
MvPolynomial.rename_surjective
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.card
Finite.induction_empty_option
Nat.card_congr
ringKrullDim_eq_of_ringEquiv
Fintype.card_eq_zero
PEmpty.instIsEmpty
CharP.cast_eq_zero
CharP.ofCharZero
WithBot.charZero
add_zero
Fintype.card_option
le_imp_le_of_le_of_le
add_le_add_left
WithBot.addRightMono
covariant_swap_add_of_covariant_add
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
le_refl
Eq.ge
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Ideal.Quotient.commSemiring
Order.krullDim
Set.Elem
PrimeSpectrum
PrimeSpectrum.zeroLocus
SetLike.coe
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Subtype.preorder
PrimeSpectrum.instPartialOrder
Set
Set.instMembership
ringKrullDim.eq_1
Order.krullDim_eq_of_orderIso
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Ideal.span
Set.instSingletonSet
WithBot.one
AddMonoidWithOne.toOne
Set.nonempty_coe_sort
Set.nonempty_iff_ne_empty
PrimeSpectrum.zeroLocus_empty_iff_eq_top
Ideal.Quotient.nontrivial_iff
RingHom.domain_nontrivial
Ideal.instIsTwoSided_1
Order.krullDim_eq_iSup_length
WithBot.coe_one
WithBot.coe_add
ENat.iSup_add
RelSeries.instNonempty
WithBot.coe_le_coe
iSup_le_iff
Ideal.exists_minimalPrimes_le
PrimeSpectrum.isPrime
bot_le
lt_of_le_of_ne
Set.disjoint_iff
Ideal.disjoint_nonZeroDivisors_of_mem_minimalPrimes
PrimeSpectrum.zeroLocus_span
RelSeries.cons_length
le_iSup
DFunLike.coe
RingHom
RingHom.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom.instRingHomClass
Ideal.span_singleton_le_iff_mem
Ideal.Quotient.lift_surjective_of_surjective
Polynomial
Polynomial.commSemiring
Polynomial.coeff_C_zero
Polynomial.X_mem_nonzeroDivisors
Polynomial.coeff_X_zero
PowerSeries
PowerSeries.instCommSemiring
MvPowerSeries.X_mem_nonzeroDivisors
PowerSeries.constantCoeff_X
---
← Back to Index