Documentation Verification Report

PID

📁 Source: Mathlib/RingTheory/KrullDimension/PID.lean

Statistics

MetricCount
Definitions0
Theoremsheight_eq_one_of_isMaximal, krullDimLE_one, ringKrullDim_eq_one
3
Total3

IsPrincipalIdealRing

Theorems

NameKindAssumesProvesValidatesDepends On
height_eq_one_of_isMaximal 📖mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.height
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
le_antisymm
ringKrullDim_eq_one
Ideal.height_le_ringKrullDim_of_ne_top
Ideal.IsPrime.ne_top'
Ideal.IsMaximal.isPrime'
Nat.cast_one
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
Ideal.height_eq_primeHeight
Ideal.primeHeight.eq_1
Order.height_pos
not_isMin_of_lt
Ideal.bot_lt_of_maximal
IsDomain.toNontrivial
krullDimLE_one 📖mathematicalRing.KrullDimLE
CommRing.toCommSemiring
Ring.krullDimLE_one_iff
not_minimal_iff_exists_lt
Set.notMem_setOf_iff
minimalPrimes_eq_minimals
of_surjective
Ideal.instIsTwoSided_1
RingHom.instRingHomClass
Ideal.Quotient.mk_surjective
Ideal.map_isPrime_of_surjective
Ideal.mk_ker
LT.lt.le
IsPrime.to_maximal_ideal
Ideal.Quotient.isDomain
Ideal.map_eq_bot_iff_le_ker
LT.lt.not_ge
Ideal.comap_isMaximal_of_surjective
Ideal.comap_map_of_surjective'
sup_of_le_left
ringKrullDim_eq_one 📖mathematicalIsField
CommSemiring.toSemiring
CommRing.toCommSemiring
ringKrullDim
WithBot
ENat
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
eq_of_le_of_not_lt
Nat.cast_one
Ring.krullDimLE_iff
krullDimLE_one
Order.le_of_lt_succ
Ring.KrullDimLE.isField_of_isDomain
Nat.cast_zero

---

← Back to Index