📁 Source: Mathlib/RingTheory/KrullDimension/Regular.lean
exists_ltSeries_support_isMaximal_last_of_ltSeries_support
ringKrullDim_quotient_add_one_of_mem_nonZeroDivisors
supportDim_add_length_eq_supportDim_of_isRegular
supportDim_le_supportDim_quotSMulTop_succ
supportDim_le_supportDim_quotSMulTop_succ_of_mem_jacobson
supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_jacobson
supportDim_quotSMulTop_succ_eq_of_notMem_minimalPrimes_of_mem_maximalIdeal
supportDim_quotSMulTop_succ_eq_supportDim
supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson
supportDim_quotSMulTop_succ_le_of_notMem_minimalPrimes
ringKrullDim_add_length_eq_ringKrullDim_of_isRegular
ringKrullDim_le_ringKrullDim_add_card
ringKrullDim_le_ringKrullDim_add_spanFinrank
ringKrullDim_le_ringKrullDim_quotSMulTop_succ
ringKrullDim_quotSMulTop_succ_eq_ringKrullDim
ringKrullDim_quotSMulTop_succ_eq_ringKrullDim_of_mem_jacobson
ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim
ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_jacobson
ringKrullDim_quotient_span_singleton_succ_eq_ringKrullDim_of_mem_nonZeroDivisors
RelSeries.length
Set.Elem
PrimeSpectrum
CommRing.toCommSemiring
support
setOf
Preorder.toLT
Subtype.preorder
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
Set
Set.instMembership
Ideal.IsMaximal
CommSemiring.toSemiring
PrimeSpectrum.asIdeal
RelSeries.last
Ideal.exists_le_maximal
Ideal.IsPrime.ne_top'
PrimeSpectrum.isPrime
lt_or_eq_of_le
Ideal.IsMaximal.isPrime'
mem_support_mono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
RelSeries.last_snoc
le_refl
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
WithBot.some
ENat
Ideal.height
ringKrullDim
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
WithBot
WithBot.add
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
instCommSemiringENat
HasQuotient.Quotient
Ideal.instHasQuotient_1
Ideal.span
Set.instSingletonSet
Ideal.Quotient.commSemiring
WithBot.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
le_antisymm
ringKrullDim_quotient_succ_le_of_nonZeroDivisor
Ideal.height_le_ringKrullDim_quotient_add_one
RingTheory.Sequence.IsRegular
supportDim
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Submodule.instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
toDistribMulAction
Ideal.ofList
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Ideal.ofList_nil
Submodule.bot_smul
CharP.cast_eq_zero
CharP.ofCharZero
WithBot.charZero
add_zero
supportDim_eq_of_equiv
RingTheory.Sequence.IsRegular.top_ne_smul
Ideal.ofList_cons
Ideal.span_singleton_eq_top
sup_of_le_left
Submodule.top_smul
Submodule.Quotient.isScalarTower
Nat.cast_add
Nat.cast_one
RingTheory.Sequence.isRegular_cons_iff
Finite.quotient
IsLocalRing.maximalIdeal
Preorder.toLE
WithBot.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
QuotSMulTop
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Submodule.pointwiseAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Submodule.pointwiseDistribMulAction
IsLocalRing.maximalIdeal_le_jacobson
Ring.toSemiring
Ideal.jacobson
annihilator
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
supportDim_eq_bot_of_subsingleton
Submodule.Quotient.instSubsingletonQuotient
iSup_le_iff
PrimeSpectrum.exist_ltSeries_mem_one_of_mem_last
supportDim_ne_bot_iff_nontrivial
Submodule.Quotient.nontrivial_iff
smulCommClass_self
Submodule.top_ne_pointwise_smul_of_mem_jacobson_annihilator
WithBot.coe_unbot
WithBot.coe_le_coe
zero_le
LT.lt.trans_eq
support_quotSMulTop
LTSeries.monotone
Eq.trans_le
LTSeries.strictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Nat.instZeroLEOneClass
le_imp_le_of_le_of_le
Nat.mono_cast
WithBot.addLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
WithBot.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
le_tsub_add
Nat.instOrderedSub
Nat.cast_add_one
supportDim.eq_1
Order.krullDim.eq_1
add_le_add_left
WithBot.addRightMono
covariant_swap_add_of_covariant_add
le_iSup
sInf_le
mem_support_iff_of_finite
LE.le.trans
Nat.cast_le
IsSMulRegular
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsSMulRegular.notMem_of_mem_minimalPrimes
Set.Nonempty.to_subtype
nonempty_support_of_nontrivial
Order.krullDim_eq_iSup_length
ENat.iSup_add
RelSeries.instNonempty
Ideal.exists_minimalPrimes_le
Ideal.minimalPrimes_isPrime
lt_of_le_of_ne
RelSeries.cons_length
Ring.toAddCommGroup
IsScalarTower.right
Ideal.mul_top
Ideal.instIsTwoSided_1
ringKrullDim_eq_of_ringEquiv
Module.supportDim_quotient_eq_ringKrullDim
Module.supportDim_self_eq_ringKrullDim
Module.supportDim_add_length_eq_supportDim_of_isRegular
Module.Finite.self
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Finset.card
ringKrullDim_le_ringKrullDim_quotient_add_card
IsLocalRing.ringJacobson_eq_maximalIdeal
Submodule.spanFinrank
ringKrullDim_le_ringKrullDim_quotient_add_spanFinrank
IsLocalRing.le_maximalIdeal
AddMonoidWithOne.toAddMonoid
Submodule.instAddCommMonoidWithOne
Module.toDistribMulAction
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.to_smulCommClass
Algebra.id
Module.supportDim_le_supportDim_quotSMulTop_succ
Algebra.toSMul
Ring.jacobson
Module.supportDim_quotSMulTop_succ_eq_supportDim_mem_jacobson
Ideal.ringJacobson_le_jacobson
Module.Flat.isSMulRegular_of_nonZeroDivisors
Module.FaithfullyFlat.toFlat
Module.FaithfullyFlat.instOfNontrivialOfFree
IsLocalRing.toNontrivial
Module.Free.self
---
← Back to Index