Documentation Verification Report

LaurentSeries

πŸ“ Source: Mathlib/RingTheory/LaurentSeries.lean

Statistics

MetricCount
DefinitionsLaurentSeries, coeff, limit, LaurentSeriesAlgEquiv, LaurentSeriesPkg, LaurentSeriesRingEquiv, RatFuncAdicCompl, comparePkg, derivative, extensionAsRingHom, hasseDeriv, instAlgebraPowerSeries, instAlgebraRatFuncAdicCompl, instAlgebraSubtypeAdicCompletionPolynomialRatFuncIdealXMemValuationSubringAdicCompletionIntegers, instCoePowerSeries, instTopologicalSpaceSpaceRatFuncLaurentSeriesPkg, instUniformSpace, instUniformSpaceRatFuncAdicCompl, instValuedWithZeroMultiplicativeInt, powerSeriesAlgEquiv, powerSeriesEquivSubring, powerSeriesPart, powerSeriesRingEquiv, powerSeries_as_subring, ratfuncAdicComplPkg, ratfuncAdicComplRingEquiv, Β«term_βΈ¨XβΈ©Β», idealX, coeToLaurentSeries
29
Theoremscoeff_eventually_equal, coeff_support_bddBelow, coeff_tendsto, eventually_mem_nhds, exists_lb_coeff_ne, exists_lb_eventual_support, exists_lb_support, LaurentSeriesRingEquiv_def, LaurentSeriesRingEquiv_mem_valuationSubring, LaurentSeries_coe, X_order_mul_powerSeriesPart, algebraMap_C_mem_adicCompletionIntegers, algebraMap_apply, coe_X_compare, coe_algebraMap, coe_range_dense, coeff_coe_powerSeries, coeff_zero_of_lt_intValuation, coeff_zero_of_lt_valuation, comparePkg_eq_extension, continuous_coe, derivative_apply, derivative_iterate, derivative_iterate_coeff, eq_coeff_of_valuation_sub_lt, exists_Polynomial_intValuation_lt, exists_powerSeries_of_memIntegers, exists_ratFunc_eq_v, exists_ratFunc_val_lt, hasseDeriv_coeff, hasseDeriv_comp, hasseDeriv_comp_coeff, hasseDeriv_single, hasseDeriv_single_add, hasseDeriv_zero, inducing_coe, instIsFractionRingPowerSeries, instLaurentSeriesComplete, intValuation_le_iff_coeff_lt_eq_zero, mem_integers_of_powerSeries, ofPowerSeries_powerSeriesPart, of_powerSeries_localization, powerSeriesEquivSubring_apply, powerSeriesEquivSubring_coe_apply, powerSeriesPart_coeff, powerSeriesPart_eq_zero, powerSeriesPart_zero, powerSeriesRingEquiv_coe_apply, powerSeries_ext_subring, ratfuncAdicComplRingEquiv_apply, single_order_mul_powerSeriesPart, tendsto_valuation, uniformContinuous_coeff, val_le_one_iff_eq_coe, valuation_LaurentSeries_equal_extension, valuation_X_pow, valuation_coe_ratFunc, valuation_compare, valuation_def, valuation_le_iff_coeff_lt_eq_zero, valuation_le_iff_coeff_lt_log_eq_zero, valuation_single_zpow, coe_C, coe_X, coe_add, coe_mul, coe_neg, coe_one, coe_pow, coe_smul, coe_sub, coe_zero, coeff_coe, intValuation_X, intValuation_eq_of_coe, algebraMap_apply_div, coe_X, coe_coe, instFaithfulSMulPolynomialLaurentSeries, single_inv, single_one_eq_pow, single_zpow, valuation_eq_LaurentSeries_valuation
83
Total112

LaurentSeries

Definitions

NameCategoryTheorems
LaurentSeriesAlgEquiv πŸ“–CompOpβ€”
LaurentSeriesPkg πŸ“–CompOp
5 mathmath: LaurentSeriesRingEquiv_def, valuation_LaurentSeries_equal_extension, LaurentSeries_coe, valuation_compare, ratfuncAdicComplRingEquiv_apply
LaurentSeriesRingEquiv πŸ“–CompOp
7 mathmath: LaurentSeriesRingEquiv_def, algebraMap_C_mem_adicCompletionIntegers, exists_powerSeries_of_memIntegers, LaurentSeriesRingEquiv_mem_valuationSubring, powerSeries_ext_subring, powerSeriesRingEquiv_coe_apply, mem_integers_of_powerSeries
RatFuncAdicCompl πŸ“–CompOp
10 mathmath: LaurentSeriesRingEquiv_def, algebraMap_C_mem_adicCompletionIntegers, coe_X_compare, LaurentSeriesRingEquiv_mem_valuationSubring, powerSeries_ext_subring, powerSeriesRingEquiv_coe_apply, valuation_compare, comparePkg_eq_extension, ratfuncAdicComplRingEquiv_apply, mem_integers_of_powerSeries
comparePkg πŸ“–CompOp
1 mathmath: comparePkg_eq_extension
derivative πŸ“–CompOp
3 mathmath: derivative_iterate_coeff, derivative_apply, derivative_iterate
extensionAsRingHom πŸ“–CompOp
1 mathmath: comparePkg_eq_extension
hasseDeriv πŸ“–CompOp
8 mathmath: derivative_apply, hasseDeriv_comp_coeff, hasseDeriv_coeff, hasseDeriv_single_add, hasseDeriv_comp, derivative_iterate, hasseDeriv_zero, hasseDeriv_single
instAlgebraPowerSeries πŸ“–CompOp
5 mathmath: coe_algebraMap, of_powerSeries_localization, RatFunc.valuation_eq_LaurentSeries_valuation, valuation_def, instIsFractionRingPowerSeries
instAlgebraRatFuncAdicCompl πŸ“–CompOpβ€”
instAlgebraSubtypeAdicCompletionPolynomialRatFuncIdealXMemValuationSubringAdicCompletionIntegers πŸ“–CompOpβ€”
instCoePowerSeries πŸ“–CompOpβ€”
instTopologicalSpaceSpaceRatFuncLaurentSeriesPkg πŸ“–CompOpβ€”
instUniformSpace πŸ“–CompOp
1 mathmath: comparePkg_eq_extension
instUniformSpaceRatFuncAdicCompl πŸ“–CompOp
2 mathmath: tendsto_valuation, comparePkg_eq_extension
instValuedWithZeroMultiplicativeInt πŸ“–CompOp
18 mathmath: valuation_le_iff_coeff_lt_eq_zero, valuation_single_zpow, inducing_coe, continuous_coe, val_le_one_iff_eq_coe, exists_ratFunc_val_lt, intValuation_le_iff_coeff_lt_eq_zero, valuation_LaurentSeries_equal_extension, instLaurentSeriesComplete, valuation_coe_ratFunc, valuation_compare, coe_range_dense, comparePkg_eq_extension, valuation_def, valuation_le_iff_coeff_lt_log_eq_zero, uniformContinuous_coeff, exists_ratFunc_eq_v, valuation_X_pow
powerSeriesAlgEquiv πŸ“–CompOpβ€”
powerSeriesEquivSubring πŸ“–CompOp
2 mathmath: powerSeriesEquivSubring_apply, powerSeriesEquivSubring_coe_apply
powerSeriesPart πŸ“–CompOp
6 mathmath: ofPowerSeries_powerSeriesPart, single_order_mul_powerSeriesPart, powerSeriesPart_coeff, X_order_mul_powerSeriesPart, powerSeriesPart_zero, powerSeriesPart_eq_zero
powerSeriesRingEquiv πŸ“–CompOp
1 mathmath: powerSeriesRingEquiv_coe_apply
powerSeries_as_subring πŸ“–CompOp
3 mathmath: powerSeries_ext_subring, powerSeriesEquivSubring_apply, powerSeriesEquivSubring_coe_apply
ratfuncAdicComplPkg πŸ“–CompOp
3 mathmath: LaurentSeriesRingEquiv_def, valuation_compare, ratfuncAdicComplRingEquiv_apply
ratfuncAdicComplRingEquiv πŸ“–CompOp
2 mathmath: coe_X_compare, ratfuncAdicComplRingEquiv_apply
Β«term_βΈ¨XβΈ©Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
LaurentSeriesRingEquiv_def πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RatFuncAdicCompl
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
UniformSpace.Completion.mul
WithVal
RatFunc
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
Polynomial.idealX
WithVal.instRing
Valued.toUniformSpace
WithVal.instValued
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
WithVal.instCommRing
RatFunc.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
LaurentSeriesRingEquiv
RingHom
PowerSeries
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
AbstractCompletion.compare
instIsDomain
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
LaurentSeriesPkg
ratfuncAdicComplPkg
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
LaurentSeriesRingEquiv_mem_valuationSubring πŸ“–mathematicalβ€”RatFuncAdicCompl
ValuationSubring
UniformSpace.Completion.instField
WithVal
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
Polynomial.idealX
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
Valuation.valuationSubring
Valued.v
Valued.valuedCompletion
DFunLike.coe
RingEquiv
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
UniformSpace.Completion.mul
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
WithVal.instCommRing
RatFunc.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
LaurentSeriesRingEquiv
RingHom
PowerSeries
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
β€”Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
LaurentSeriesRingEquiv_def
IsTopologicalDivisionRing.toIsTopologicalRing
valuation_compare
val_le_one_iff_eq_coe
LaurentSeries_coe πŸ“–mathematicalβ€”AbstractCompletion.coe
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
LaurentSeriesPkg
DFunLike.coe
RingHom
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
HahnSeries.instSemiring
instLatticeInt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RatFunc.liftAlgebra
HahnSeries.instField
HahnSeries.powerSeriesAlgebra
Int.instSemiring
Int.instIsStrictOrderedRing
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
RatFunc.instFaithfulSMulPolynomialLaurentSeries
β€”instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
X_order_mul_powerSeriesPart πŸ“–mathematicalHahnSeries.order
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
DFunLike.coe
RingHom
PowerSeries
HahnSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
MvPowerSeries.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.X
powerSeriesPart
β€”Int.instIsStrictOrderedRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
HahnSeries.ofPowerSeries_X
HahnSeries.single_pow
nsmul_eq_mul
mul_one
one_pow
single_order_mul_powerSeriesPart
algebraMap_C_mem_adicCompletionIntegers πŸ“–mathematicalβ€”RatFuncAdicCompl
ValuationSubring
IsDedekindDomain.HeightOneSpectrum.adicCompletion
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
RatFunc
RatFunc.instField
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
Polynomial.idealX
UniformSpace.Completion.instField
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
IsDedekindDomain.HeightOneSpectrum.valuation
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.comp
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instNonAssocSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
RingEquiv.toRingHom
LaurentSeriesRingEquiv
HahnSeries.C
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
HahnSeries.ofPowerSeries_C
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
LaurentSeriesRingEquiv_mem_valuationSubring
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
HahnSeries.instSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
HahnSeries.powerSeriesAlgebra
PowerSeries.instAlgebra
Algebra.id
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
HahnSeries.instNonAssocSemiring
HahnSeries.C
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
HahnSeries.ofPowerSeries_C
coe_X_compare πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
RatFuncAdicCompl
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
UniformSpace.Completion.mul
WithVal
RatFunc
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
Polynomial.idealX
WithVal.instRing
Valued.toUniformSpace
WithVal.instValued
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
WithVal.instCommRing
RatFunc.instCommRing
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
ratfuncAdicComplRingEquiv
UniformSpace.Completion.coe'
RatFunc.X
instIsDomain
RingHom
PowerSeries
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
PowerSeries.X
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
instIsDomain
PowerSeries.coe_X
Int.instIsOrderedAddMonoid
RatFunc.instFaithfulSMulPolynomialLaurentSeries
RatFunc.coe_X
Multiplicative.isOrderedMonoid
LaurentSeries_coe
AbstractCompletion.compare_coe
coe_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
PowerSeries.instCommSemiring
HahnSeries.instSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
RingHom.instFunLike
algebraMap
instAlgebraPowerSeries
HahnSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
HahnSeries.ofPowerSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_range_dense πŸ“–mathematicalβ€”DenseRange
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
UniformSpace.toTopologicalSpace
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
instValuedWithZeroMultiplicativeInt
RatFunc
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RatFunc.instField
HahnSeries.instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RatFunc.liftAlgebra
HahnSeries.instField
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
RatFunc.instFaithfulSMulPolynomialLaurentSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
RatFunc.instFaithfulSMulPolynomialLaurentSeries
denseRange_iff_closure_range
Set.ext
uniformity_eq_comap_neg_add_nhds_zero_swapped
IsUniformAddGroup.isLeftUniformAddGroup
Valued.toIsUniformAddGroup
Valued.mem_nhds_zero
exists_ratFunc_val_lt
add_comm
coeff_coe_powerSeries πŸ“–mathematicalβ€”HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
PowerSeries
HahnSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
β€”Int.instIsStrictOrderedRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
HahnSeries.ofPowerSeries_apply_coeff
coeff_zero_of_lt_intValuation πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
RingHom
PowerSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
WithZero.exp
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
PowerSeries.X_pow_dvd_iff
IsScalarTower.right
span_singleton_dvd_span_singleton_iff_dvd
PowerSeries.instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
PowerSeries.idealX.eq_1
Multiplicative.isOrderedCancelMonoid
IsPrincipalIdealRing.isDedekindDomain
IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd
instIsFractionRingPowerSeries
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
valuation_def
coe_algebraMap
coeff_zero_of_lt_valuation πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
WithZero.exp
HahnSeries.coeffβ€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
HahnSeries.coeff_eq_zero_of_lt_order
neg_le_iff_add_nonneg
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
eq_add_neg_of_add_eq
add_comm
powerSeriesPart_coeff
intValuation_le_iff_coeff_lt_eq_zero
ofPowerSeries_powerSeriesPart
neg_neg
neg_add_rev
WithZero.exp_add
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
HahnSeries.ofPowerSeries_X_pow
PowerSeries.coe_pow
valuation_X_pow
mul_le_mul_right
WithZero.instMulLeftMono
IsOrderedMonoid.toMulLeftMono
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
neg_eq_zero
sub_eq_zero_of_eq
le_of_lt
sub_eq_iff_eq_add
neg_sub
sub_eq_add_neg
valuation_single_zpow
comparePkg_eq_extension πŸ“–mathematicalβ€”Equiv.toFun
RatFuncAdicCompl
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
UniformEquiv.toEquiv
instUniformSpaceRatFuncAdicCompl
instUniformSpace
comparePkg
OneHom.toFun
UniformSpace.Completion
RatFunc
Valued.toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
UniformSpace.Completion.ring
IsTopologicalDivisionRing.toIsTopologicalRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
MonoidHom.toOneHom
RingHom.toMonoidHom
extensionAsRingHom
continuous_coe
instLaurentSeriesComplete
CompletableTopField.toT0Space
HahnSeries.instField
Valued.completable
instValuedWithZeroMultiplicativeInt
β€”instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
continuous_coe πŸ“–mathematicalβ€”Continuous
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
UniformSpace.toTopologicalSpace
Valued.toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
instValuedWithZeroMultiplicativeInt
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
HahnSeries.instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RatFunc.liftAlgebra
HahnSeries.instField
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
RatFunc.instFaithfulSMulPolynomialLaurentSeries
β€”UniformContinuous.continuous
instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
RatFunc.instFaithfulSMulPolynomialLaurentSeries
isUniformInducing_iff'
inducing_coe
derivative_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LaurentSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
derivative
hasseDeriv
β€”β€”
derivative_iterate πŸ“–mathematicalβ€”Nat.iterate
LaurentSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
HahnSeries.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
derivative
AddMonoid.toNatSMul
HahnSeries.instAddMonoid
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
Nat.factorial
hasseDeriv
β€”HahnSeries.ext
hasseDeriv_zero
one_smul
Function.iterate_succ
derivative_apply
hasseDeriv_comp
Nat.choose_symm_add
Nat.choose_one_right
Nat.factorial.eq_2
mul_nsmul
derivative_iterate_coeff πŸ“–mathematicalβ€”HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Nat.iterate
LaurentSeries
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
HahnSeries.instAddCommMonoid
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
derivative
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Polynomial.smeval
Ring.toSemiring
Int.instRing
descPochhammer
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
MonoidWithZero.toMulActionWithZero
Semiring.toMonoidWithZero
β€”derivative_iterate
HahnSeries.coeff_nsmul
Pi.smul_apply
hasseDeriv_coeff
Ring.descPochhammer_eq_factorial_smul_choose
Monoid.PowAssoc
smul_assoc
AddCommMonoid.nat_isScalarTower
eq_coeff_of_valuation_sub_lt πŸ“–mathematicalWithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
HahnSeries.instSub
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
WithZero.exp
HahnSeries.coeffβ€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
eq_of_sub_eq_zero
HahnSeries.coeff_sub
coeff_zero_of_lt_valuation
exists_Polynomial_intValuation_lt πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
PowerSeries
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
PowerSeries.instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.intValuation
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
PowerSeries.idealX
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
PowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Polynomial.toPowerSeries
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Units.val
MonoidWithZero.toMonoid
WithZero.instMonoidWithZero
Multiplicative.monoid
Int.instAddMonoid
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
sub_zero
LE.le.trans_lt
IsDedekindDomain.HeightOneSpectrum.intValuation_le_one
Units.ne_zero
WithZero.instNontrivial
toAdd_one
Multiplicative.toAdd_le
WithZero.coe_le_coe
WithZero.coe_unzero
WithZero.coe_one
Units.val_one
Units.val_le_val
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
intValuation_le_iff_coeff_lt_eq_zero
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Polynomial.coeff_coe
PowerSeries.coeff_trunc
instIsFractionRingPowerSeries
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
lt_of_le_of_lt
coe_algebraMap
WithZero.coe_mul
ofAdd_toAdd
ofAdd_add
neg_add
mul_one
mul_assoc
one_mul
mul_lt_mul_of_pos_left
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
WithZero.coe_lt_coe
ofAdd_neg
Right.inv_lt_one_iff
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
Multiplicative.isRightCancelMul
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ofAdd_zero
Multiplicative.ofAdd_lt
zero_lt_iff
exists_powerSeries_of_memIntegers πŸ“–mathematicalRatFuncAdicCompl
ValuationSubring
IsDedekindDomain.HeightOneSpectrum.adicCompletion
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
RatFunc
RatFunc.instField
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
Polynomial.idealX
UniformSpace.Completion.instField
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
IsDedekindDomain.HeightOneSpectrum.valuation
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
DFunLike.coe
RingEquiv
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
UniformSpace.Completion.mul
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
WithVal.instCommRing
RatFunc.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
LaurentSeriesRingEquiv
RingHom
PowerSeries
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
β€”IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
AbstractCompletion.inverse_compare
val_le_one_iff_eq_coe
IsTopologicalDivisionRing.toIsTopologicalRing
IsDedekindDomain.HeightOneSpectrum.mem_adicCompletionIntegers
valuation_compare
RingEquiv.symm_apply_apply
exists_ratFunc_eq_v πŸ“–mathematicalβ€”DFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
Valued.v
RatFunc.instValuedWithZeroMultiplicativeInt
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
instValuedWithZeroMultiplicativeInt
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
instIsDomain
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
map_zero
Multiplicative.isOrderedCancelMonoid
MonoidWithZeroHomClass.toZeroHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
zpow_neg
map_invβ‚€
map_zpowβ‚€
RatFunc.v_def
Polynomial.valuation_X_eq_neg_one
WithZero.exp_zsmul
WithZero.exp_neg
mul_neg
mul_one
neg_neg
WithZero.exp_log
exists_ratFunc_val_lt πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLT
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
HahnSeries.instSub
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
RingHom
RatFunc
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RatFunc.instField
HahnSeries.instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RatFunc.liftAlgebra
HahnSeries.instField
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
RatFunc.instFaithfulSMulPolynomialLaurentSeries
Units.val
MonoidWithZero.toMonoid
WithZero.instMonoidWithZero
Multiplicative.monoid
Int.instAddMonoid
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
RatFunc.instFaithfulSMulPolynomialLaurentSeries
WithZero.coe_ne_zero
Multiplicative.isOrderedCancelMonoid
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
exists_Polynomial_intValuation_lt
ofPowerSeries_powerSeriesPart
le_of_lt
algebraMap.coe_one
inv_mul_eq_iff_eq_mulβ‚€
PowerSeries.coe_pow
PowerSeries.coe_X
isReduced_of_noZeroDivisors
HahnSeries.instNoZeroDivisors
IsDomain.to_noZeroDivisors
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
HahnSeries.ofPowerSeries_X_pow
neg_neg
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
zpow_neg
zpow_natCast
inv_eq_one_div
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RatFunc.coe_X
map_one
MonoidHomClass.toOneHomClass
mul_sub
MonoidHomClass.toMulHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
map_invβ‚€
valuation_X_pow
RatFunc.coe_coe
PowerSeries.coe_sub
coe_algebraMap
instIsFractionRingPowerSeries
IsDedekindDomain.HeightOneSpectrum.adicValued_apply
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
WithZero.exp_ne_zero
Units.val_mk0
inv_mul_lt_of_lt_mulβ‚€
Units.val_mul
X_order_mul_powerSeriesPart
hasseDeriv_coeff πŸ“–mathematicalβ€”HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LaurentSeries
HahnSeries.instAddCommMonoid
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
hasseDeriv
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Ring.choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Int.instCommRing
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”β€”
hasseDeriv_comp πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LaurentSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
hasseDeriv
AddMonoid.toNatSMul
HahnSeries.instAddMonoid
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
Nat.choose
β€”HahnSeries.ext
hasseDeriv_comp_coeff
Nat.cast_add
hasseDeriv_comp_coeff πŸ“–mathematicalβ€”HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LaurentSeries
HahnSeries.instAddCommMonoid
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
hasseDeriv
AddMonoid.toNatSMul
HahnSeries.instAddMonoid
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
Nat.choose
β€”HahnSeries.coeff_nsmul
Nat.cast_add
smul_smul
mul_comm
Ring.choose_add_smul_choose
Monoid.PowAssoc
add_assoc
Nat.choose_symm_add
smul_assoc
AddCommMonoid.nat_isScalarTower
hasseDeriv_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LaurentSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
hasseDeriv
ZeroHom
HahnSeries
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Ring.choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Int.instCommRing
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”hasseDeriv_single_add
hasseDeriv_single_add πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LaurentSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
LinearMap.instFunLike
hasseDeriv
ZeroHom
HahnSeries
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Ring.choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Int.instCommRing
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”HahnSeries.ext
HahnSeries.coeff_single_same
HahnSeries.coeff_single_of_ne
smul_zero
hasseDeriv_zero πŸ“–mathematicalβ€”hasseDeriv
LinearMap.id
LaurentSeries
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HahnSeries.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
AddCommGroup.toAddCommMonoid
HahnSeries.instModule
β€”LinearMap.ext
HahnSeries.ext
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
add_zero
Ring.choose_zero_right'
pow_zero
one_smul
inducing_coe πŸ“–mathematicalβ€”IsUniformInducing
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Valued.toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
instValuedWithZeroMultiplicativeInt
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
HahnSeries.instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RatFunc.liftAlgebra
HahnSeries.instField
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
RatFunc.instFaithfulSMulPolynomialLaurentSeries
β€”instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
RatFunc.instFaithfulSMulPolynomialLaurentSeries
isUniformInducing_iff
Filter.comap.eq_1
Filter.ext
uniformity_eq_comap_nhds_zero
IsUniformAddGroup.isRightUniformAddGroup
Valued.toIsUniformAddGroup
Valued.mem_nhds
sub_zero
subset_refl
Set.instReflSubset
subset_trans
Set.instIsTransSubset
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
instIsFractionRingPowerSeries
valuation_def
Multiplicative.isOrderedCancelMonoid
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
RatFunc.valuation_eq_LaurentSeries_valuation
Set.Subset.refl
Set.mem_setOf_eq
RatFunc.v_def
instIsFractionRingPowerSeries πŸ“–mathematicalβ€”IsFractionRing
PowerSeries
PowerSeries.instCommSemiring
Semifield.toCommSemiring
Field.toSemifield
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
HahnSeries.instCommSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
instAlgebraPowerSeries
β€”IsLocalization.of_le
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
of_powerSeries_localization
powers_le_nonZeroDivisors_of_noZeroDivisors
PowerSeries.instNoZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
PowerSeries.X_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
isUnit_of_mem_nonZeroDivisors
Int.instIsOrderedAddMonoid
map_mem_nonZeroDivisors
PowerSeries.instNontrivial
HahnSeries.instNoZeroDivisors
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
HahnSeries.ofPowerSeries_injective
instLaurentSeriesComplete πŸ“–mathematicalβ€”CompleteSpace
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
instValuedWithZeroMultiplicativeInt
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Cauchy.eventually_mem_nhds
intValuation_le_iff_coeff_lt_eq_zero πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
HahnSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
RingHom
PowerSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
WithZero.exp
LinearMap
RingHom.id
PowerSeries.instAddCommMonoid
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”PowerSeries.X_pow_dvd_iff
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_algebraMap
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
instIsFractionRingPowerSeries
valuation_def
Multiplicative.isOrderedCancelMonoid
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
IsScalarTower.right
span_singleton_dvd_span_singleton_iff_dvd
IsScalarTower.left
Ideal.span_singleton_pow
Ideal.instIsTwoSided_1
IsDedekindDomain.HeightOneSpectrum.intValuation_le_pow_iff_dvd
mem_integers_of_powerSeries πŸ“–mathematicalβ€”RatFuncAdicCompl
ValuationSubring
IsDedekindDomain.HeightOneSpectrum.adicCompletion
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
RatFunc
RatFunc.instField
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
Polynomial.idealX
UniformSpace.Completion.instField
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
IsDedekindDomain.HeightOneSpectrum.valuation
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
DFunLike.coe
RingEquiv
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
UniformSpace.Completion.mul
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
WithVal.instCommRing
RatFunc.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
LaurentSeriesRingEquiv
RingHom
PowerSeries
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
β€”IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsTopologicalDivisionRing.toIsTopologicalRing
valuation_compare
ofPowerSeries_powerSeriesPart πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
RingHom.instFunLike
HahnSeries.ofPowerSeries
powerSeriesPart
LaurentSeries
HahnSeries.instMul
Int.instAddCommMonoid
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
HahnSeries.order
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
mul_assoc
HahnSeries.single_mul_single
neg_add_cancel
mul_one
HahnSeries.C_apply
HahnSeries.C_one
one_mul
single_order_mul_powerSeriesPart
of_powerSeries_localization πŸ“–mathematicalβ€”IsLocalization
PowerSeries
PowerSeries.instCommSemiring
CommRing.toCommSemiring
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
CommSemiring.toSemiring
PowerSeries.X
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instCommSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
instAlgebraPowerSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
HahnSeries.single_mul_single
add_neg_cancel
mul_one
neg_add_cancel
HahnSeries.ofPowerSeries_X_pow
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
single_order_mul_powerSeriesPart
ofPowerSeries_powerSeriesPart
mul_comm
LT.lt.le
coe_algebraMap
HahnSeries.ofPowerSeries_injective
powerSeriesEquivSubring_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
PowerSeries
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
powerSeries_as_subring
MvPowerSeries.instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subring.toCommRing
HahnSeries.instCommRing
Distrib.toAdd
PowerSeries.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
powerSeriesEquivSubring
RingHom
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
Subring.map
PowerSeries.instRing
DivisionRing.toRing
Field.toDivisionRing
Top.top
Subring.instTop
Ring.toSemiring
Subring.mem_map
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
powerSeriesEquivSubring_coe_apply πŸ“–mathematicalβ€”LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
powerSeries_as_subring
DFunLike.coe
RingEquiv
PowerSeries
MvPowerSeries.instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subring.toCommRing
HahnSeries.instCommRing
Distrib.toAdd
PowerSeries.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
powerSeriesEquivSubring
RingHom
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
powerSeriesPart_coeff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PowerSeries
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
PowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
PowerSeries.coeff
powerSeriesPart
HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
HahnSeries.order
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”β€”
powerSeriesPart_eq_zero πŸ“–mathematicalβ€”powerSeriesPart
PowerSeries
PowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
LaurentSeries
HahnSeries.instZero
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
β€”Mathlib.Tactic.Contrapose.contrapose₁
PowerSeries.ext_iff
powerSeriesPart_coeff
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
add_zero
PowerSeries.coeff_zero_eq_constantCoeff
powerSeriesPart_zero
powerSeriesPart_zero πŸ“–mathematicalβ€”powerSeriesPart
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
HahnSeries.instZero
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
PowerSeries
PowerSeries.instZero
β€”PowerSeries.ext
powerSeriesPart_coeff
HahnSeries.order_zero
zero_add
LinearMap.map_zero
powerSeriesRingEquiv_coe_apply πŸ“–mathematicalβ€”IsDedekindDomain.HeightOneSpectrum.adicCompletion
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
RatFunc
RatFunc.instField
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
Polynomial.idealX
ValuationSubring
UniformSpace.Completion.instField
WithVal
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
IsDedekindDomain.HeightOneSpectrum.valuation
WithVal.instField
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
SetLike.instMembership
ValuationSubring.instSetLike
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
DFunLike.coe
RingEquiv
PowerSeries
MvPowerSeries.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ValuationSubring.instCommRingSubtypeMem
Distrib.toAdd
PowerSeries.instCommRing
EquivLike.toFunLike
RingEquiv.instEquivLike
powerSeriesRingEquiv
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
RatFuncAdicCompl
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
UniformSpace.Completion.mul
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instAddCompletion
WithVal.instCommRing
RatFunc.instCommRing
LaurentSeriesRingEquiv
RingHom
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
β€”IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
Valued.isTopologicalDivisionRing
Valued.completable
Valued.toIsUniformAddGroup
powerSeries_ext_subring πŸ“–mathematicalβ€”Subring.map
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
RatFuncAdicCompl
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
UniformSpace.Completion.ring
WithVal
RatFunc
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
Polynomial.idealX
WithVal.instRing
Valued.toUniformSpace
WithVal.instValued
IsTopologicalDivisionRing.toIsTopologicalRing
WithVal.instField
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
RingEquiv.toRingHom
HahnSeries.instNonAssocSemiring
Semiring.toNonAssocSemiring
UniformSpace.Completion.instField
Valued.completable
LaurentSeriesRingEquiv
powerSeries_as_subring
ValuationSubring.toSubring
IsDedekindDomain.HeightOneSpectrum.adicCompletion
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
RatFunc.instIsFractionRingPolynomial
IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers
β€”Subring.ext
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Valued.completable
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
mem_integers_of_powerSeries
exists_powerSeries_of_memIntegers
ratfuncAdicComplRingEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
RatFuncAdicCompl
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
UniformSpace.Completion.mul
WithVal
RatFunc
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
Polynomial.idealX
WithVal.instRing
Valued.toUniformSpace
WithVal.instValued
HahnSeries.instMul
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
instAddCompletion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
WithVal.instCommRing
RatFunc.instCommRing
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
RingEquiv.instEquivLike
ratfuncAdicComplRingEquiv
AbstractCompletion.compare
instIsDomain
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
ratfuncAdicComplPkg
LaurentSeriesPkg
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
single_order_mul_powerSeriesPart πŸ“–mathematicalβ€”HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
HahnSeries.instMul
Int.instAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DFunLike.coe
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
HahnSeries.order
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
RingHom
PowerSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
powerSeriesPart
β€”HahnSeries.ext
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
sub_add_cancel
HahnSeries.coeff_single_mul_add
one_mul
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
coeff_coe_powerSeries
powerSeriesPart_coeff
add_sub_cancel
StrictMono.injective
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.instIsOrderedCancelAddMonoid
HahnSeries.ofPowerSeries_apply
HahnSeries.embDomain_notin_range
Mathlib.Tactic.Contrapose.contraposeβ‚„
Mathlib.Tactic.Contrapose.contraposeβ‚‚
HahnSeries.order_le_of_coeff_ne_zero
tendsto_valuation πŸ“–mathematicalβ€”Filter.Tendsto
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
Valued.v
RatFunc.instValuedWithZeroMultiplicativeInt
Filter.comap
IsDedekindDomain.HeightOneSpectrum.adicCompletion
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.commRing
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
Polynomial.idealX
UniformSpace.Completion.coe'
WithVal
IsDedekindDomain.HeightOneSpectrum.valuation
Valued.toUniformSpace
WithVal.instRing
WithVal.instValued
nhds
UniformSpace.toTopologicalSpace
instUniformSpaceRatFuncAdicCompl
WithZeroTopology.topologicalSpace
UniformSpace.Completion.ring
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valued.valuedCompletion
β€”IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valued.is_topological_valuation
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Filter.tendsto_def
Filter.HasBasis.mem_iff'
WithZeroTopology.hasBasis_nhds_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
Units.val_mk0
subset_refl
Set.instReflSubset
Set.Subset.trans
Set.mem_preimage
Set.mem_Iio
Valued.valuedCompletion_apply
Set.preimage_mono
Valued.completable
WithZeroTopology.tendsto_of_ne_zero
Valuation.ne_zero_iff
WithZero.instNontrivial
Filter.eventually_comap
Filter.Eventually.eq_1
Valued.mem_nhds
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Valuation.map_eq_of_sub_lt
uniformContinuous_coeff πŸ“–mathematicalβ€”UniformContinuous
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
instValuedWithZeroMultiplicativeInt
HahnSeries.coeff
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
uniformContinuous_iff_eventually
Filter.eventually_iff_exists_mem
WithZero.coe_ne_zero
Filter.HasBasis.mem_of_mem
Valued.hasBasis_uniformity
eq_coeff_of_valuation_sub_lt
le_of_lt
lt_add_one
Int.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
mem_uniformity_of_eq
val_le_one_iff_eq_coe πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
WithZero.one
instOneMultiplicativeOfZero
Int.instCommRing
RingHom
PowerSeries
HahnSeries
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
valuation_le_iff_coeff_lt_log_eq_zero
one_ne_zero
NeZero.one
WithZero.instNontrivial
WithZero.log_one
neg_zero
HahnSeries.ext
coeff_coe_powerSeries
HahnSeries.embDomain_notin_range
Nat.instIsOrderedCancelAddMonoid
valuation_LaurentSeries_equal_extension πŸ“–mathematicalβ€”IsDenseInducing.extend
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AbstractCompletion.space
Valued.toUniformSpace
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
LaurentSeriesPkg
UniformSpace.toTopologicalSpace
AbstractCompletion.uniformStruct
AbstractCompletion.coe
WithZeroTopology.topologicalSpace
AbstractCompletion.isDenseInducing
DFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
Valuation.instFunLike
Valued.v
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
instValuedWithZeroMultiplicativeInt
β€”IsDenseInducing.extend_unique
instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
T5Space.toT4Space
WithZeroTopology.t5Space
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
AbstractCompletion.isDenseInducing
Multiplicative.isOrderedCancelMonoid
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
RatFunc.v_def
PowerSeries.instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
instIsFractionRingPowerSeries
RatFunc.instFaithfulSMulPolynomialLaurentSeries
RatFunc.valuation_eq_LaurentSeries_valuation
Valued.continuous_valuation
valuation_X_pow πŸ“–mathematicalβ€”DFunLike.coe
Valuation
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithZero
Multiplicative
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
HahnSeries.instSemiring
RingHom
PowerSeries
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.instFunLike
HahnSeries.ofPowerSeries
PowerSeries.X
WithZero.exp
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
instIsFractionRingPowerSeries
valuation_def
coe_algebraMap
Multiplicative.isOrderedCancelMonoid
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
PowerSeries.intValuation_X
WithZero.exp_nsmul
smul_neg
nsmul_one
valuation_coe_ratFunc πŸ“–mathematicalβ€”DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
RingHom
RatFunc
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RatFunc.instField
HahnSeries.instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
RatFunc.liftAlgebra
HahnSeries.instField
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
RatFunc.instFaithfulSMulPolynomialLaurentSeries
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
RatFunc.instValuedWithZeroMultiplicativeInt
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
RatFunc.instFaithfulSMulPolynomialLaurentSeries
Multiplicative.isOrderedCancelMonoid
instIsDomain
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
valuation_compare πŸ“–mathematicalβ€”DFunLike.coe
Valuation
RatFuncAdicCompl
WithZero
Multiplicative
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
UniformSpace.Completion.ring
WithVal
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.commRing
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
Polynomial.idealX
Valued.toUniformSpace
WithVal.instValued
IsTopologicalDivisionRing.toIsTopologicalRing
UniformSpace.toTopologicalSpace
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
Valuation.instFunLike
Valued.v
Valued.valuedCompletion
AbstractCompletion.compare
instIsDomain
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
RatFunc.instValuedWithZeroMultiplicativeInt
LaurentSeriesPkg
ratfuncAdicComplPkg
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instRing
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
instValuedWithZeroMultiplicativeInt
β€”IsTopologicalDivisionRing.toIsTopologicalRing
Valued.isTopologicalDivisionRing
Valued.toIsUniformAddGroup
instIsDomain
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
AbstractCompletion.isDenseInducing
valuation_LaurentSeries_equal_extension
AbstractCompletion.compare_comp_eq_compare
T4Space.t3Space
T5Space.toT4Space
WithZeroTopology.t5Space
Valued.continuous_valuation
tendsto_valuation
valuation_def πŸ“–mathematicalβ€”Valued.v
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
instValuedWithZeroMultiplicativeInt
IsDedekindDomain.HeightOneSpectrum.valuation
PowerSeries
PowerSeries.instCommRing
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
HahnSeries.instField
instAlgebraPowerSeries
Semifield.toCommSemiring
instIsFractionRingPowerSeries
PowerSeries.idealX
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
valuation_le_iff_coeff_lt_eq_zero πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
WithZero.exp
HahnSeries.coeff
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coeff_zero_of_lt_valuation
single_order_mul_powerSeriesPart
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
valuation_single_zpow
neg_neg
mul_comm
le_mul_inv_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
Multiplicative.isOrderedCancelMonoid
WithZero.exp_neg
mul_inv
WithZero.exp_add
le_trans
IsPrincipalIdealRing.isDedekindDomain
PowerSeries.instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
instIsFractionRingPowerSeries
IsDedekindDomain.HeightOneSpectrum.valuation_le_one
WithZero.log_le_iff_le_exp
one_ne_zero
NeZero.one
WithZero.instNontrivial
le_neg
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
WithZero.log_one
neg_zero
LT.lt.le
intValuation_le_iff_coeff_lt_eq_zero
powerSeriesPart_coeff
neg_nonpos_of_nonneg
sub_eq_neg_add
neg_sub
valuation_le_iff_coeff_lt_log_eq_zero πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DFunLike.coe
Valuation
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
HahnSeries.coeff
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
WithZero.exp.eq_1
neg_neg
valuation_le_iff_coeff_lt_eq_zero
WithZero.log_exp
valuation_single_zpow πŸ“–mathematicalβ€”DFunLike.coe
Valuation
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.instRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
WithZero.exp
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
HahnSeries.ofPowerSeries_X_pow
PowerSeries.coe_pow
valuation_X_pow
map_invβ‚€
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
HahnSeries.inv_single
neg_neg
inv_one
WithZero.exp_neg

LaurentSeries.Cauchy

Definitions

NameCategoryTheorems
coeff πŸ“–CompOp
3 mathmath: coeff_tendsto, coeff_support_bddBelow, exists_lb_support
limit πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_eventually_equal πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
Filter.Eventuallyβ€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
exists_lb_coeff_ne
Set.iInter_congr_Prop
le_of_lt
lt_max_of_lt_right
Set.ext
Filter.eventually_iff
Filter.biInter_mem
Set.finite_Icc
coeff_tendsto
Filter.principal_singleton
Filter.sets_of_superset
HasSubset.Subset.trans
Set.instIsTransSubset
coeff_support_bddBelow πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
BddBelow
Function.support
coeff
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
exists_lb_support
not_le
coeff_tendsto πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
Filter.Tendsto
HahnSeries.coeff
Filter.principal
Set
Set.instSingletonSet
coeff
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
le_of_eq
DiscreteUniformity.inst
Cauchy.map
LaurentSeries.uniformContinuous_coeff
Filter.principal_singleton
DiscreteUniformity.eq_pure_cauchyConst
eventually_mem_nhds πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
limit
Filter.Eventually
Set.instMembership
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
Valued.mem_nhds
WithZero.lt_log_iff_exp_lt
WithZero.instNontrivial
neg_sub
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
Int.instZeroLEOneClass
Filter.Eventually.mono
coeff_eventually_equal
lt_of_le_of_lt
LaurentSeries.valuation_le_iff_coeff_lt_eq_zero
HahnSeries.coeff_sub
sub_eq_zero
exists_lb_coeff_ne πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
Filter.Eventuallyβ€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
exists_lb_eventual_support
exists_lb_support
Filter.sets_of_superset
lt_of_lt_of_le
min_le_left
min_le_right
exists_lb_eventual_support πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
Filter.Eventuallyβ€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
WithZero.coe_ne_zero
Filter.mem_prod_iff
Filter.le_def
Filter.HasBasis.mem_of_mem
Valued.hasBasis_uniformity
Filter.forall_mem_nonempty_iff_neBot
Filter.inter_mem_iff
LaurentSeries.valuation_le_iff_coeff_lt_eq_zero
sub_zero
Set.IsPWO.isWF
HahnSeries.isPWO_support'
HahnSeries.support_nonempty_iff
LaurentSeries.eq_coeff_of_valuation_sub_lt
lt_of_lt_of_le
le_of_lt
min_le_right
Function.notMem_support
Set.IsWF.not_lt_min
lt_trans
min_le_left
Filter.mem_of_superset
Filter.inter_mem
exists_lb_support πŸ“–mathematicalCauchy
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valued.toUniformSpace
HahnSeries.instRing
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
WithZero
Multiplicative
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
LaurentSeries.instValuedWithZeroMultiplicativeInt
coeffβ€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
exists_lb_eventual_support
Ultrafilter.eq_of_le_pure
Cauchy.map
LaurentSeries.uniformContinuous_coeff
coeff_tendsto
Filter.principal_singleton
Filter.mem_of_superset

PowerSeries

Definitions

NameCategoryTheorems
idealX πŸ“–CompOp
5 mathmath: intValuation_eq_of_coe, LaurentSeries.exists_Polynomial_intValuation_lt, RatFunc.valuation_eq_LaurentSeries_valuation, intValuation_X, LaurentSeries.valuation_def

Theorems

NameKindAssumesProvesValidatesDepends On
coe_C πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
C
Int.instAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
HahnSeries.C
β€”HahnSeries.ofPowerSeries_C
Int.instIsStrictOrderedRing
coe_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
X
ZeroHom
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”HahnSeries.ofPowerSeries_X
Int.instIsStrictOrderedRing
coe_add πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
HahnSeries.instAdd
AddCommMonoid.toAddMonoid
β€”RingHom.map_add
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
MvPowerSeries.instMul
HahnSeries.instMul
Int.instAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
β€”RingHom.map_mul
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Ring.toAddCommGroup
HahnSeries.instNeg
β€”RingHom.map_neg
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_one πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
MvPowerSeries.instOne
HahnSeries.instOne
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHom.map_one
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
HahnSeries.instSemiring
Int.instAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
β€”RingHom.map_pow
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoid
instModule
HahnSeries.instSMul
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
β€”HahnSeries.ext
Int.instIsStrictOrderedRing
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
coeff_coe
smul_ite
smul_zero
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
HahnSeries.instSub
β€”RingHom.map_sub
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
instZero
HahnSeries.instZero
β€”RingHom.map_zero
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
coeff_coe πŸ“–mathematicalβ€”HahnSeries.coeff
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
PowerSeries
HahnSeries
instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
LinearMap
RingHom.id
instAddCommMonoid
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
β€”Int.instIsStrictOrderedRing
LaurentSeries.coeff_coe_powerSeries
LE.le.not_gt
StrictMono.injective
Nat.strictMono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.instIsOrderedCancelAddMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
HahnSeries.ofPowerSeries_apply
HahnSeries.embDomain_notin_image_support
Set.image_congr
intValuation_X πŸ“–mathematicalβ€”DFunLike.coe
Valuation
PowerSeries
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
instCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.intValuation
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
IsDiscreteValuationRing.toIsPrincipalIdealRing
instIsDiscreteValuationRing
idealX
X
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithZero.exp
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
instIsDomain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
instIsDiscreteValuationRing
Polynomial.coe_X
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
intValuation_eq_of_coe
IsDedekindDomain.HeightOneSpectrum.intValuation_singleton
Polynomial.X_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.idealX_span
intValuation_eq_of_coe πŸ“–mathematicalβ€”DFunLike.coe
Valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
CommRing.toRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.intValuation
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
Polynomial.idealX
PowerSeries
instCommRing
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
instIsDiscreteValuationRing
idealX
Polynomial.toPowerSeries
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
instIsDiscreteValuationRing
Valuation.map_zero
Polynomial.coe_zero
Ideal.uniqueFactorizationMonoid
IsDedekindDomain.HeightOneSpectrum.intValuation_if_neg
Int.instCharZero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsDedekindDomain.HeightOneSpectrum.ne_bot
count_associates_factors_eq
Ideal.span_singleton_prime
Polynomial.X_ne_zero
Polynomial.prime_X
ValuationRing.toPreValuationRing
of_isDiscreteValuationRing
Field.isDomain
IsDedekindDomain.HeightOneSpectrum.isPrime
IsDomain.to_noZeroDivisors
PrincipalIdealRing.to_uniqueFactorizationMonoid
instUniqueFactorizationMonoid
count_span_normalizedFactors_eq_of_normUnit
Polynomial.normUnit_X
normUnit_X
X_prime
normalized_count_X_eq_of_coe

RatFunc

Definitions

NameCategoryTheorems
coeToLaurentSeries πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply_div πŸ“–mathematicalβ€”DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
instField
instIsDomain
HahnSeries.instSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
liftAlgebra
HahnSeries.instField
Int.instAddCommGroup
Int.instLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
instFaithfulSMulPolynomialLaurentSeries
instDiv
instAlgebraOfPolynomial
DivInvMonoid.toDiv
HahnSeries.instDivInvMonoid
β€”instIsDomain
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
Int.instIsOrderedAddMonoid
instFaithfulSMulPolynomialLaurentSeries
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsScalarTower.algebraMap_apply
isScalarTower_liftAlgebra
coe_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
instField
HahnSeries.instSemiring
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
liftAlgebra
HahnSeries.instField
Int.instAddCommGroup
Int.instLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.powerSeriesAlgebra
Int.instSemiring
Int.instIsStrictOrderedRing
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
instFaithfulSMulPolynomialLaurentSeries
X
instIsDomain
ZeroHom
HahnSeries
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”Int.instIsOrderedAddMonoid
Int.instIsStrictOrderedRing
instFaithfulSMulPolynomialLaurentSeries
instIsDomain
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsScalarTower.algebraMap_apply
isScalarTower_liftAlgebra
Polynomial.coe_X
HahnSeries.ofPowerSeries_X
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
RingHom
PowerSeries
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
PowerSeries.instSemiring
HahnSeries.instNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Int.instSemiring
RingHom.instFunLike
HahnSeries.ofPowerSeries
Int.instIsStrictOrderedRing
Polynomial.toPowerSeries
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LaurentSeries
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommSemiring.toSemiring
Semifield.toCommSemiring
instField
HahnSeries.instSemiring
Int.instAddCommMonoid
algebraMap
liftAlgebra
HahnSeries.instField
Int.instAddCommGroup
Int.instLinearOrder
Int.instIsOrderedAddMonoid
HahnSeries.powerSeriesAlgebra
Polynomial
CommRing.toCommSemiring
Polynomial.commSemiring
PowerSeries.algebraPolynomial
Algebra.id
instFaithfulSMulPolynomialLaurentSeries
coePolynomial
instIsDomain
β€”Int.instIsStrictOrderedRing
Int.instIsOrderedAddMonoid
instFaithfulSMulPolynomialLaurentSeries
instIsDomain
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
isScalarTower_liftAlgebra
instFaithfulSMulPolynomialLaurentSeries πŸ“–mathematicalβ€”FaithfulSMul
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toSMul
Polynomial.commSemiring
Semifield.toCommSemiring
HahnSeries.instSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Int.instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
CommSemiring.toSemiring
HahnSeries.powerSeriesAlgebra
PowerSeries.algebraPolynomial
Algebra.id
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
faithfulSMul_iff_algebraMap_injective
Polynomial.algebraMap_hahnSeries_injective
single_inv πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
HahnSeries.instField
Int.instAddCommGroup
Int.instLinearOrder
Int.instIsOrderedAddMonoid
β€”eq_inv_of_mul_eq_one_right
Int.instIsOrderedAddMonoid
HahnSeries.single_mul_single
add_neg_cancel
mul_inv_cancelβ‚€
single_one_eq_pow πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
HahnSeries.instSemiring
Int.instAddCommMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
β€”IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
HahnSeries.single_pow
mul_one
one_pow
single_zpow πŸ“–mathematicalβ€”DFunLike.coe
ZeroHom
HahnSeries
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
HahnSeries.instZero
ZeroHom.funLike
HahnSeries.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toZPow
HahnSeries.instDivInvMonoid
Int.instAddCommGroup
Int.instLinearOrder
Int.instIsOrderedAddMonoid
β€”Int.instIsOrderedAddMonoid
single_one_eq_pow
Nat.cast_one
inv_one
HahnSeries.inv_single
zpow_neg
zpow_natCast
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
valuation_eq_LaurentSeries_valuation πŸ“–mathematicalβ€”DFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.commRing
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
instIsFractionRingPolynomial
Polynomial.idealX
LaurentSeries
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
HahnSeries.instField
Int.instAddCommGroup
Int.instIsOrderedAddMonoid
PowerSeries
PowerSeries.instCommRing
PowerSeries.instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
LaurentSeries.instAlgebraPowerSeries
Semifield.toCommSemiring
LaurentSeries.instIsFractionRingPowerSeries
PowerSeries.idealX
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
HahnSeries.instSemiring
instLatticeInt
RingHom.instFunLike
algebraMap
liftAlgebra
HahnSeries.powerSeriesAlgebra
Polynomial.commSemiring
PowerSeries.algebraPolynomial
instFaithfulSMulPolynomialLaurentSeries
β€”induction_on'
instIsDomain
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
instIsFractionRingPolynomial
Int.instIsOrderedAddMonoid
PowerSeries.instIsDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
PowerSeries.instIsDiscreteValuationRing
LaurentSeries.instIsFractionRingPowerSeries
instFaithfulSMulPolynomialLaurentSeries
mem_nonZeroDivisors_iff_ne_zero
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
Polynomial.nontrivial
IsDomain.toNontrivial
mk_eq_mk'
PowerSeries.instNoZeroDivisors
PowerSeries.instNontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsFractionRing.mk'_eq_div
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsScalarTower.algebraMap_apply
isScalarTower_liftAlgebra
PowerSeries.intValuation_eq_of_coe
IsDedekindDomain.HeightOneSpectrum.valuation_of_mk'

(root)

Definitions

NameCategoryTheorems
LaurentSeries πŸ“–CompOp
48 mathmath: RatFunc.instFaithfulSMulPolynomialLaurentSeries, LaurentSeries.LaurentSeriesRingEquiv_def, LaurentSeries.valuation_le_iff_coeff_lt_eq_zero, LaurentSeries.ofPowerSeries_powerSeriesPart, RatFunc.coe_X, LaurentSeries.coe_algebraMap, RatFunc.coe_coe, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, LaurentSeries.val_le_one_iff_eq_coe, LaurentSeries.algebraMap_apply, LaurentSeries.derivative_iterate_coeff, LaurentSeries.exists_ratFunc_val_lt, LaurentSeries.derivative_apply, LaurentSeries.of_powerSeries_localization, RatFunc.valuation_eq_LaurentSeries_valuation, LaurentSeries.coe_X_compare, LaurentSeries.hasseDeriv_comp_coeff, RatFunc.algebraMap_apply_div, LaurentSeries.exists_powerSeries_of_memIntegers, LaurentSeries.hasseDeriv_coeff, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, LaurentSeries.valuation_LaurentSeries_equal_extension, LaurentSeries.hasseDeriv_single_add, LaurentSeries.LaurentSeries_coe, LaurentSeries.powerSeries_ext_subring, LaurentSeries.hasseDeriv_comp, LaurentSeries.powerSeriesRingEquiv_coe_apply, LaurentSeries.powerSeriesEquivSubring_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, LaurentSeries.instLaurentSeriesComplete, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.valuation_compare, LaurentSeries.coe_range_dense, LaurentSeries.comparePkg_eq_extension, LaurentSeries.valuation_def, LaurentSeries.derivative_iterate, LaurentSeries.valuation_le_iff_coeff_lt_log_eq_zero, LaurentSeries.uniformContinuous_coeff, LaurentSeries.hasseDeriv_zero, LaurentSeries.ratfuncAdicComplRingEquiv_apply, LaurentSeries.mem_integers_of_powerSeries, LaurentSeries.instIsFractionRingPowerSeries, LaurentSeries.powerSeriesPart_zero, LaurentSeries.exists_ratFunc_eq_v, LaurentSeries.hasseDeriv_single, LaurentSeries.powerSeriesPart_eq_zero

---

← Back to Index