| Name | Category | Theorems |
LaurentSeriesAlgEquiv π | CompOp | β |
LaurentSeriesPkg π | CompOp | 5 mathmath: LaurentSeriesRingEquiv_def, valuation_LaurentSeries_equal_extension, LaurentSeries_coe, valuation_compare, ratfuncAdicComplRingEquiv_apply
|
LaurentSeriesRingEquiv π | CompOp | 7 mathmath: LaurentSeriesRingEquiv_def, algebraMap_C_mem_adicCompletionIntegers, exists_powerSeries_of_memIntegers, LaurentSeriesRingEquiv_mem_valuationSubring, powerSeries_ext_subring, powerSeriesRingEquiv_coe_apply, mem_integers_of_powerSeries
|
RatFuncAdicCompl π | CompOp | 10 mathmath: LaurentSeriesRingEquiv_def, algebraMap_C_mem_adicCompletionIntegers, coe_X_compare, LaurentSeriesRingEquiv_mem_valuationSubring, powerSeries_ext_subring, powerSeriesRingEquiv_coe_apply, valuation_compare, comparePkg_eq_extension, ratfuncAdicComplRingEquiv_apply, mem_integers_of_powerSeries
|
comparePkg π | CompOp | 1 mathmath: comparePkg_eq_extension
|
derivative π | CompOp | 3 mathmath: derivative_iterate_coeff, derivative_apply, derivative_iterate
|
extensionAsRingHom π | CompOp | 1 mathmath: comparePkg_eq_extension
|
hasseDeriv π | CompOp | 8 mathmath: derivative_apply, hasseDeriv_comp_coeff, hasseDeriv_coeff, hasseDeriv_single_add, hasseDeriv_comp, derivative_iterate, hasseDeriv_zero, hasseDeriv_single
|
instAlgebraPowerSeries π | CompOp | 5 mathmath: coe_algebraMap, of_powerSeries_localization, RatFunc.valuation_eq_LaurentSeries_valuation, valuation_def, instIsFractionRingPowerSeries
|
instAlgebraRatFuncAdicCompl π | CompOp | β |
instAlgebraSubtypeAdicCompletionPolynomialRatFuncIdealXMemValuationSubringAdicCompletionIntegers π | CompOp | β |
instCoePowerSeries π | CompOp | β |
instTopologicalSpaceSpaceRatFuncLaurentSeriesPkg π | CompOp | β |
instUniformSpace π | CompOp | 1 mathmath: comparePkg_eq_extension
|
instUniformSpaceRatFuncAdicCompl π | CompOp | 2 mathmath: tendsto_valuation, comparePkg_eq_extension
|
instValuedWithZeroMultiplicativeInt π | CompOp | 18 mathmath: valuation_le_iff_coeff_lt_eq_zero, valuation_single_zpow, inducing_coe, continuous_coe, val_le_one_iff_eq_coe, exists_ratFunc_val_lt, intValuation_le_iff_coeff_lt_eq_zero, valuation_LaurentSeries_equal_extension, instLaurentSeriesComplete, valuation_coe_ratFunc, valuation_compare, coe_range_dense, comparePkg_eq_extension, valuation_def, valuation_le_iff_coeff_lt_log_eq_zero, uniformContinuous_coeff, exists_ratFunc_eq_v, valuation_X_pow
|
powerSeriesAlgEquiv π | CompOp | β |
powerSeriesEquivSubring π | CompOp | 2 mathmath: powerSeriesEquivSubring_apply, powerSeriesEquivSubring_coe_apply
|
powerSeriesPart π | CompOp | 6 mathmath: ofPowerSeries_powerSeriesPart, single_order_mul_powerSeriesPart, powerSeriesPart_coeff, X_order_mul_powerSeriesPart, powerSeriesPart_zero, powerSeriesPart_eq_zero
|
powerSeriesRingEquiv π | CompOp | 1 mathmath: powerSeriesRingEquiv_coe_apply
|
powerSeries_as_subring π | CompOp | 3 mathmath: powerSeries_ext_subring, powerSeriesEquivSubring_apply, powerSeriesEquivSubring_coe_apply
|
ratfuncAdicComplPkg π | CompOp | 3 mathmath: LaurentSeriesRingEquiv_def, valuation_compare, ratfuncAdicComplRingEquiv_apply
|
ratfuncAdicComplRingEquiv π | CompOp | 2 mathmath: coe_X_compare, ratfuncAdicComplRingEquiv_apply
|
Β«term_βΈ¨XβΈ©Β» π | CompOp | β |