Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/LocalProperties/Basic.lean

Statistics

MetricCount
DefinitionsLocalizationPreserves, OfLocalizationMaximal, ContainsIdentities, HoldsForLocalization, HoldsForLocalizationAway, LocalizationAwayPreserves, LocalizationPreserves, OfLocalizationFiniteSpan, OfLocalizationFiniteSpanTarget, OfLocalizationPrime, OfLocalizationSpan, OfLocalizationSpanTarget, PropertyIsLocal, StableUnderCompositionWithLocalizationAway, StableUnderCompositionWithLocalizationAwaySource, StableUnderCompositionWithLocalizationAwayTarget
16
TheoremsidealMap_eq_ofEq_comp_toLocalizedβ‚€, eq_of_localization_maximal, le_of_localization_maximal, localized'_eq_map, localizedβ‚€_eq_restrictScalars_map, mem_of_localization_maximal, holdsForLocalizationAway, isLocalizationMap, localRingHom, mk, containsIdentities, of_bijective, isLocalization_map, localizationPreserves, of_isLocalization, and, respectsIso, away, and, mk, ofIsLocalization, ofIsLocalization', and, ofIsLocalization, ofLocalizationSpan, HoldsForLocalizationAway, StableUnderCompositionWithLocalizationAwayTarget, and, localizationAwayPreserves, ofLocalizationSpan, ofLocalizationSpanTarget, respectsIso, stableUnderCompositionWithLocalizationAway, respectsIso, and, ofLocalizationSpanTarget_iff_finite, ofLocalizationSpan_iff_finite, eq_zero_of_localization, ideal_eq_bot_of_localization, ideal_eq_bot_of_localization'
40
Total56

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
idealMap_eq_ofEq_comp_toLocalizedβ‚€ πŸ“–mathematicalβ€”idealMap
CommSemiring.toSemiring
LinearMap.comp
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
toModule
Submodule.localizedβ‚€
linearMap
instIsLocalizedModuleLinearMapOfIsLocalization
Submodule.restrictScalars
toSMul
IsScalarTower.right
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
Submodule.addCommMonoid
Submodule.module
RingHom.id
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.ofEq
Ideal.localizedβ‚€_eq_restrictScalars_map
Submodule.toLocalizedβ‚€
β€”IsScalarTower.right

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_localization_maximal πŸ“–β€”map
Localization.AtPrime
IsMaximal.isPrime'
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
OreLocalization.instSemiring
primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
β€”β€”IsMaximal.isPrime'
le_antisymm
le_of_localization_maximal
Eq.le
Eq.ge
le_of_localization_maximal πŸ“–β€”Ideal
Localization.AtPrime
IsMaximal.isPrime'
OreLocalization.instSemiring
CommSemiring.toSemiring
primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
β€”β€”IsMaximal.isPrime'
mem_of_localization_maximal
mem_map_of_mem
localized'_eq_map πŸ“–mathematicalβ€”Submodule.localized'
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Algebra.toModule
IsScalarTower.right
Algebra.linearMap
instIsLocalizedModuleLinearMapOfIsLocalization
map
RingHom
RingHom.instFunLike
algebraMap
β€”IsScalarTower.right
instIsLocalizedModuleLinearMapOfIsLocalization
map.eq_1
span.eq_1
Submodule.localized'_eq_span
Algebra.coe_linearMap
localizedβ‚€_eq_restrictScalars_map πŸ“–mathematicalβ€”Submodule.localizedβ‚€
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Algebra.toModule
Algebra.linearMap
instIsLocalizedModuleLinearMapOfIsLocalization
Submodule.restrictScalars
Algebra.toSMul
IsScalarTower.right
map
RingHom
RingHom.instFunLike
algebraMap
β€”instIsLocalizedModuleLinearMapOfIsLocalization
IsScalarTower.right
localized'_eq_map
mem_of_localization_maximal πŸ“–β€”Localization.AtPrime
IsMaximal.isPrime'
Ideal
OreLocalization.instSemiring
CommSemiring.toSemiring
primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
DFunLike.coe
β€”β€”IsMaximal.isPrime'
Submodule.mem_of_localization_maximal
IsScalarTower.right
instIsLocalizedModuleLinearMapOfIsLocalization
Localization.isLocalization
localized'_eq_map

RingHom

Definitions

NameCategoryTheorems
ContainsIdentities πŸ“–MathDef
6 mathmath: HoldsForLocalizationAway.containsIdentities, Bijective.containsIdentities, IsStandardOpenImmersion.containsIdentities, finite_containsIdentities, Flat.containsIdentities, Etale.containsIdentities
HoldsForLocalization πŸ“–MathDef
3 mathmath: FormallyUnramified.holdsForLocalization, EssFiniteType.holdsForLocalization, HoldsForLocalization.mk
HoldsForLocalizationAway πŸ“–MathDef
12 mathmath: PropertyIsLocal.HoldsForLocalizationAway, finiteType_holdsForLocalizationAway, QuasiFinite.holdsForLocalizationAway, Smooth.holdsForLocalizationAway, IsStandardOpenImmersion.holdsForLocalizationAway, isStandardSmooth_holdsForLocalizationAway, isStandardSmoothOfRelativeDimension_holdsForLocalizationAway, HoldsForLocalization.holdsForLocalizationAway, FormallySmooth.holdsForLocalizationAway, Flat.holdsForLocalizationAway, FormallyUnramified.holdsForLocalizationAway, finitePresentation_holdsForLocalizationAway
LocalizationAwayPreserves πŸ“–MathDef
2 mathmath: PropertyIsLocal.localizationAwayPreserves, LocalizationPreserves.away
LocalizationPreserves πŸ“–MathDef
8 mathmath: isStandardSmoothOfRelativeDimension_localizationPreserves, FormallySmooth.localizationPreserves, finite_localizationPreserves, isStandardSmooth_localizationPreserves, IsStableUnderBaseChange.localizationPreserves, finitePresentation_localizationPreserves, surjective_localizationPreserves, finiteType_localizationPreserves
OfLocalizationFiniteSpan πŸ“–MathDef
1 mathmath: ofLocalizationSpan_iff_finite
OfLocalizationFiniteSpanTarget πŸ“–MathDef
1 mathmath: ofLocalizationSpanTarget_iff_finite
OfLocalizationPrime πŸ“–MathDef
2 mathmath: FormallyUnramified.ofLocalizationPrime, Flat.ofLocalizationPrime
OfLocalizationSpan πŸ“–MathDef
10 mathmath: OfLocalizationSpan.mk, Bijective.ofLocalizationSpan, isIntegral_ofLocalizationSpan, finiteType_ofLocalizationSpan, Etale.ofLocalizationSpan, OfLocalizationSpanTarget.ofLocalizationSpan, ofLocalizationSpan_iff_finite, finite_ofLocalizationSpan, PropertyIsLocal.ofLocalizationSpan, surjective_ofLocalizationSpan
OfLocalizationSpanTarget πŸ“–MathDef
10 mathmath: finiteType_ofLocalizationSpanTarget, QuasiFinite.ofLocalizationSpanTarget, ofLocalizationSpanTarget_iff_finite, PropertyIsLocal.ofLocalizationSpanTarget, Smooth.ofLocalizationSpanTarget, locally_ofLocalizationSpanTarget, FormallyUnramified.ofLocalizationSpanTarget, Flat.ofLocalizationSpanTarget, Etale.ofLocalizationSpanTarget, finitePresentation_ofLocalizationSpanTarget
PropertyIsLocal πŸ“–CompData
10 mathmath: QuasiFinite.propertyIsLocal, AlgebraicGeometry.HasRingHomProperty.isLocal_ringHomProperty, Etale.propertyIsLocal, finiteType_isLocal, finitePresentation_isLocal, Smooth.propertyIsLocal, AlgebraicGeometry.HasRingHomProperty.isLocal_ringHomProperty_of_isZariskiLocalAtSource_of_isZariskiLocalAtTarget, Flat.propertyIsLocal, FormallyUnramified.propertyIsLocal, locally_propertyIsLocal
StableUnderCompositionWithLocalizationAway πŸ“–MathDef
3 mathmath: isStandardSmoothOfRelativeDimension_stableUnderCompositionWithLocalizationAway, isStandardSmooth_stableUnderCompositionWithLocalizationAway, StableUnderComposition.stableUnderCompositionWithLocalizationAway
StableUnderCompositionWithLocalizationAwaySource πŸ“–MathDefβ€”
StableUnderCompositionWithLocalizationAwayTarget πŸ“–MathDef
1 mathmath: PropertyIsLocal.StableUnderCompositionWithLocalizationAwayTarget

Theorems

NameKindAssumesProvesValidatesDepends On
ofLocalizationSpanTarget_iff_finite πŸ“–mathematicalβ€”OfLocalizationSpanTarget
OfLocalizationFiniteSpanTarget
β€”Ideal.span_eq_top_iff_finite
Subtype.prop
ofLocalizationSpan_iff_finite πŸ“–mathematicalβ€”OfLocalizationSpan
OfLocalizationFiniteSpan
β€”Ideal.span_eq_top_iff_finite
Subtype.prop

RingHom.HoldsForLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
holdsForLocalizationAway πŸ“–mathematicalRingHom.HoldsForLocalizationRingHom.HoldsForLocalizationAwayβ€”β€”
isLocalizationMap πŸ“–mathematicalRingHom.StableUnderComposition
RingHom.LocalizationPreserves
RingHom.HoldsForLocalization
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Submonoid.comap
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsLocalization.mapβ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsScalarTower.right
Localization.isLocalization
IsLocalization.localization_isScalarTower_of_submonoid_le
IsLocalization.isLocalization_of_submonoid_le
Submonoid.le_comap_map
IsLocalization.ringHom_ext
RingHom.ext
IsLocalization.map_comp
IsLocalization.map_eq
localRingHom πŸ“–mathematicalRingHom.StableUnderComposition
RingHom.LocalizationPreserves
RingHom.HoldsForLocalization
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
RingHom.instRingHomClass
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Localization.localRingHom
β€”RingHom.instRingHomClass
isLocalizationMap
mk πŸ“–mathematicalRingHom.RespectsIso
Localization
CommRing.toCommMonoid
OreLocalization.instCommRing
OreLocalization.oreSetComm
algebraMap
CommRing.toCommSemiring
OreLocalization.instSemiring
CommSemiring.toSemiring
OreLocalization.instAlgebra
Algebra.id
RingHom.HoldsForLocalizationβ€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
Localization.isLocalization
AlgHom.comp_algebraMap

RingHom.HoldsForLocalizationAway

Theorems

NameKindAssumesProvesValidatesDepends On
containsIdentities πŸ“–mathematicalRingHom.HoldsForLocalizationAwayRingHom.ContainsIdentitiesβ€”of_bijective
Function.bijective_id
of_bijective πŸ“–β€”RingHom.HoldsForLocalizationAway
Function.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”β€”IsLocalization.at_units
Submonoid.powers_one
IsLocalization.isLocalization_of_algEquiv

RingHom.IsStableUnderBaseChange

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalization_map πŸ“–mathematicalRingHom.IsStableUnderBaseChangeIsLocalization.map
CommRing.toCommSemiring
Submonoid.map
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Submonoid.le_comap_map
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Submonoid.le_comap_map
IsScalarTower.of_algebraMap_eq'
of_isLocalization
IsLocalization.map_comp
localizationPreserves πŸ“–mathematicalRingHom.IsStableUnderBaseChangeRingHom.LocalizationPreservesβ€”isLocalization_map
of_isLocalization πŸ“–β€”RingHom.IsStableUnderBaseChange
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”β€”Algebra.isPushout_of_isLocalization

RingHom.LocalizationAwayPreserves

Theorems

NameKindAssumesProvesValidatesDepends On
and πŸ“–β€”RingHom.LocalizationAwayPreservesβ€”β€”β€”
respectsIso πŸ“–mathematicalRingHom.LocalizationAwayPreservesRingHom.RespectsIsoβ€”IsLocalization.away_of_isUnit_of_bijective
isUnit_one
Equiv.bijective
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingEquiv.bijective
IsLocalization.Away.map.eq_1
IsLocalization.map_comp
RingHom.comp_assoc
RingEquiv.symm_comp
RingHomCompTriple.comp_eq
RingHomCompTriple.ids

RingHom.LocalizationPreserves

Theorems

NameKindAssumesProvesValidatesDepends On
away πŸ“–mathematicalRingHom.LocalizationPreservesRingHom.LocalizationAwayPreservesβ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Submonoid.map_powers

RingHom.OfLocalizationSpan

Theorems

NameKindAssumesProvesValidatesDepends On
and πŸ“–β€”RingHom.OfLocalizationSpanβ€”β€”β€”
mk πŸ“–mathematicalRingHom.RespectsIso
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
RingHom.OfLocalizationSpanβ€”IsScalarTower.right
Algebra.to_smulCommClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Localization.isLocalization
IsLocalization.ringHom_ext
RingHom.ext
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
Algebra.TensorProduct.tmul_one_eq_one_tmul
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsLocalization.map_eq
AlgEquiv.commutes
ofIsLocalization πŸ“–β€”RingHom.OfLocalizationSpan
RingHom.RespectsIso
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”Localization.isLocalization
IsLocalization.ringHom_ext
RingHom.ext
RingHom.comp_apply
IsLocalization.map_comp
AlgEquiv.commutes
ofIsLocalization' πŸ“–β€”RingHom.OfLocalizationSpan
RingHom.RespectsIso
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalization.Away.map
Set
Set.instMembership
β€”β€”ofIsLocalization
IsLocalization.map_comp

RingHom.OfLocalizationSpanTarget

Theorems

NameKindAssumesProvesValidatesDepends On
and πŸ“–β€”RingHom.OfLocalizationSpanTargetβ€”β€”β€”
ofIsLocalization πŸ“–β€”RingHom.OfLocalizationSpanTarget
RingHom.RespectsIso
Ideal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.comp
algebraMap
β€”β€”RingHom.comp_assoc
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.toRingHom_eq_coe
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
AlgEquiv.toRingEquiv_eq_coe
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.toRingEquiv_toRingHom
Localization.isLocalization
le_rfl
Localization.coe_algEquiv_symm
IsLocalization.map_comp
RingHom.comp_id
ofLocalizationSpan πŸ“–mathematicalRingHom.OfLocalizationSpanTarget
RingHom.StableUnderCompositionWithLocalizationAwaySource
RingHom.OfLocalizationSpanβ€”Ideal.map_top
RingHom.instRingHomClass
Ideal.map_span
Localization.isLocalization
IsLocalization.map_comp

RingHom.PropertyIsLocal

Theorems

NameKindAssumesProvesValidatesDepends On
HoldsForLocalizationAway πŸ“–mathematicalRingHom.PropertyIsLocal
RingHom.ContainsIdentities
RingHom.HoldsForLocalizationAwayβ€”RingHomCompTriple.comp_eq
RingHomCompTriple.ids
StableUnderCompositionWithLocalizationAwayTarget
StableUnderCompositionWithLocalizationAwayTarget πŸ“–mathematicalRingHom.PropertyIsLocalRingHom.StableUnderCompositionWithLocalizationAwayTargetβ€”β€”
and πŸ“–β€”RingHom.PropertyIsLocalβ€”β€”RingHom.LocalizationAwayPreserves.and
localizationAwayPreserves
RingHom.OfLocalizationSpanTarget.and
ofLocalizationSpanTarget
RingHom.OfLocalizationSpan.and
ofLocalizationSpan
RingHom.StableUnderCompositionWithLocalizationAwayTarget.and
StableUnderCompositionWithLocalizationAwayTarget
localizationAwayPreserves πŸ“–mathematicalRingHom.PropertyIsLocalRingHom.LocalizationAwayPreservesβ€”β€”
ofLocalizationSpan πŸ“–mathematicalRingHom.PropertyIsLocalRingHom.OfLocalizationSpanβ€”β€”
ofLocalizationSpanTarget πŸ“–mathematicalRingHom.PropertyIsLocalRingHom.OfLocalizationSpanTargetβ€”β€”
respectsIso πŸ“–mathematicalRingHom.PropertyIsLocalRingHom.RespectsIsoβ€”RingHom.LocalizationAwayPreserves.respectsIso
localizationAwayPreserves

RingHom.StableUnderComposition

Theorems

NameKindAssumesProvesValidatesDepends On
stableUnderCompositionWithLocalizationAway πŸ“–mathematicalRingHom.StableUnderComposition
RingHom.HoldsForLocalizationAway
RingHom.StableUnderCompositionWithLocalizationAwayβ€”β€”

RingHom.StableUnderCompositionWithLocalizationAway

Theorems

NameKindAssumesProvesValidatesDepends On
respectsIso πŸ“–mathematicalRingHom.StableUnderCompositionWithLocalizationAwayRingHom.RespectsIsoβ€”IsLocalization.away_of_isUnit_of_bijective
isUnit_one
RingEquiv.bijective

RingHom.StableUnderCompositionWithLocalizationAwayTarget

Theorems

NameKindAssumesProvesValidatesDepends On
and πŸ“–β€”RingHom.StableUnderCompositionWithLocalizationAwayTargetβ€”β€”β€”

(root)

Definitions

NameCategoryTheorems
LocalizationPreserves πŸ“–MathDef
1 mathmath: isReduced_localizationPreserves
OfLocalizationMaximal πŸ“–MathDef
2 mathmath: isIntegrallyClosed_ofLocalizationMaximal, isReduced_ofLocalizationMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_localization πŸ“–β€”DFunLike.coe
RingHom
Localization.AtPrime
Ideal.IsMaximal.isPrime'
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
OreLocalization.instZero
CommMonoid.toMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toMulAction
β€”β€”Ideal.IsMaximal.isPrime'
Module.eq_zero_of_localization_maximal
instIsLocalizedModuleLinearMapOfIsLocalization
Localization.isLocalization
ideal_eq_bot_of_localization πŸ“–mathematicalIsLocalization.coeSubmodule
Localization.AtPrime
Ideal.IsMaximal.isPrime'
OreLocalization.instCommSemiring
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instAlgebra
Algebra.id
Bot.bot
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule.instBot
Ideal
Semiring.toModule
β€”Ideal.IsMaximal.isPrime'
bot_unique
eq_zero_of_localization
Eq.le
ideal_eq_bot_of_localization' πŸ“–β€”Ideal.map
Localization.AtPrime
Ideal.IsMaximal.isPrime'
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”β€”Ideal.IsMaximal.isPrime'
Ideal.eq_of_localization_maximal
Ideal.map_bot
RingHom.instRingHomClass

---

← Back to Index