Documentation Verification Report

Module

πŸ“ Source: Mathlib/RingTheory/LocalRing/Module.lean

Statistics

MetricCount
Definitions0
Theoremsmap_mkQ_eq, map_mkQ_eq_top, map_tensorProduct_mk_eq_top, span_eq_top_of_tmul_eq_basis, split_injective_iff_lTensor_residueField_injective, subsingleton_tensorProduct, linearCombination_bijective_of_flat, linearIndependent_of_flat, exists_basis_of_basis_baseChange, exists_basis_of_span_of_flat, exists_basis_of_span_of_maximalIdeal_rTensor_injective, free_of_flat_of_finrank_eq, free_of_flat_of_isLocalRing, free_of_lTensor_residueField_injective, free_of_maximalIdeal_rTensor_injective, mem_support_iff_nontrivial_residueField_tensorProduct, nonempty_basis_of_flat_of_finrank_eq, lTensor_injective_of_exact_of_exact_of_rTensor_injective
18
Total18

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
map_mkQ_eq πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.FG
Submodule.map
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
maximalIdeal
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.mkQ
β€”IsScalarTower.left
RingHomSurjective.ids
Submodule.comap_map_mkQ
Submodule.comap_mono
Eq.ge
LE.le.antisymm
Submodule.le_of_le_smul_of_le_jacobson_bot
jacobson_eq_maximalIdeal
bot_ne_top
Ideal.instNontrivial
toNontrivial
le_refl
sup_comm
map_mkQ_eq_top πŸ“–mathematicalβ€”Submodule.map
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
maximalIdeal
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.mkQ
β€”IsScalarTower.left
RingHomSurjective.ids
map_mkQ_eq
le_top
Module.Finite.fg_top
Submodule.map_top
Submodule.range_mkQ
map_tensorProduct_mk_eq_top πŸ“–mathematicalβ€”Submodule.map
TensorProduct
CommRing.toCommSemiring
ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
Algebra.id
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
LinearMap
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
LinearMap.instFunLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Top.top
Submodule
Submodule.instTop
β€”RingHomSurjective.ids
TensorProduct.smulCommClass_left
smulCommClass_self
IsScalarTower.left
IsScalarTower.to_smulCommClass
instIsScalarTowerResidueField
IsScalarTower.right
Submodule.Quotient.isScalarTower
Submodule.Quotient.smulCommClass
Ideal.instIsTwoSided_1
Module.IsTorsionBySet.isScalarTower
Module.isTorsionBySet_quotient_ideal_smul
LinearMap.IsScalarTower.compatibleSMul'
LinearMap.instIsScalarTower
RingHomInvPair.ids
LinearMap.instSMulCommClass
RingHomCompTriple.ids
LinearMap.ext
one_smul
Submodule.mkQ_surjective
LinearMap.comp_apply
map_mkQ_eq_top
LinearMap.range_eq_top
Submodule.map_top
Submodule.map_comp
TensorProduct.mk_surjective
Ideal.Quotient.mk_surjective
span_eq_top_of_tmul_eq_basis πŸ“–mathematicalTensorProduct.tmul
CommRing.toCommSemiring
ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
Algebra.id
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Module.Basis
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
Module.Basis.instFunLike
Submodule.span
CommSemiring.toSemiring
Set.range
Top.top
Submodule
Submodule.instTop
β€”Algebra.to_smulCommClass
RingHomSurjective.ids
TensorProduct.smulCommClass_left
smulCommClass_self
map_tensorProduct_mk_eq_top
Submodule.map_span
Ideal.instIsTwoSided_1
TensorProduct.isScalarTower_left
IsScalarTower.right
Submodule.restrictScalars_span
Ideal.Quotient.mk_surjective
Submodule.restrictScalars_eq_top_iff
Module.Basis.span_eq
Set.range_comp
split_injective_iff_lTensor_residueField_injective πŸ“–mathematicalβ€”LinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearMap.id
TensorProduct
ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingResidueField
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
Algebra.id
DFunLike.coe
LinearMap
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”RingHomCompTriple.ids
LinearMap.lTensor_comp
LinearMap.lTensor_id
LinearMap.congr_fun
RingHomSurjective.ids
Module.free_of_lTensor_residueField_injective
Submodule.mkQ_surjective
LinearMap.exact_map_mkQ_range
List.TFAE.out
RingHomInvPair.ids
Function.Exact.split_tfae
LinearMap.exact_subtype_mkQ
Subtype.val_injective
Module.projective_lifting_property
Module.Projective.of_free
Module.Projective.of_split
LinearMap.mem_range_self
LinearMap.exact_iff
LinearMap.ker_rangeRestrict
Submodule.range_subtype
Module.Finite.of_surjective
DFunLike.congr_fun
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.comp_apply
Function.Exact.linearMap_comp_eq_zero
LinearMap.exact_subtype_ker_map
LinearMap.lTensor_zero
LinearMap.zero_apply
LinearMap.ker_eq_bot
Submodule.subsingleton_iff_eq_bot
subsingleton_tensorProduct
subsingleton_tensorProduct πŸ“–mathematicalβ€”TensorProduct
CommRing.toCommSemiring
ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
Algebra.id
β€”Submodule.subsingleton_iff
subsingleton_iff_bot_eq_top
RingHomSurjective.ids
TensorProduct.smulCommClass_left
smulCommClass_self
map_tensorProduct_mk_eq_top
Submodule.map_bot

Module

Theorems

NameKindAssumesProvesValidatesDepends On
exists_basis_of_basis_baseChange πŸ“–mathematicalLinearIndependent
IsLocalRing.ResidueField
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
Algebra.id
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
Submodule.span
Set.range
Top.top
Submodule
Submodule.instTop
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
Submodule.setLike
IsLocalRing.maximalIdeal
Submodule.addCommMonoid
Submodule.module
LinearMap.rTensor
Submodule.subtype
Basis
Basis.instFunLike
β€”TensorProduct.smulCommClass_left
smulCommClass_self
Algebra.to_smulCommClass
le_refl
RingHomSurjective.ids
LinearMap.range_eq_top
Finsupp.range_linearCombination
IsLocalRing.span_eq_top_of_tmul_eq_basis
instFiniteOfFinitePresentation
Finite.of_fg
FinitePresentation.fg_ker
Finite.finsupp
Finite.finite_basis
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finite.base_change
Finite.self
RingHomInvPair.ids
LinearMap.ker_eq_bot
Submodule.subsingleton_iff_eq_bot
IsLocalRing.subsingleton_tensorProduct
LinearMap.lTensor_surjective
Submodule.finrank_eq_zero
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
commRing_strongRankCondition
FiniteDimensional.finiteDimensional_submodule
Ideal.instIsTwoSided_1
LinearMap.finrank_range_add_finrank_ker
finrank_top
IsScalarTower.to_smulCommClass
IsScalarTower.right
finrank_tensorProduct
Free.finsupp
Free.self
finrank_self
finrank_finsupp_self
one_mul
add_zero
finrank_eq_card_basis
lTensor_injective_of_exact_of_exact_of_rTensor_injective
LinearMap.exact_subtype_mkQ
Submodule.mkQ_surjective
LinearMap.exact_subtype_ker_map
Flat.lTensor_preserves_injective_linearMap
Flat.of_free
Subtype.val_injective
Function.Bijective.injective
LinearMap.baseChange_eq_ltensor
RingHomCompTriple.ids
LinearMap.comp_apply
LinearMap.lTensor_comp
Function.Exact.linearMap_comp_eq_zero
LinearMap.lTensor_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.linearCombination_single
one_smul
exists_basis_of_span_of_flat πŸ“–mathematicalSubmodule.span
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Set.range
Top.top
Submodule
Submodule.instTop
DFunLike.coe
Basis
Basis.instFunLike
β€”exists_basis_of_span_of_maximalIdeal_rTensor_injective
Flat.rTensor_preserves_injective_linearMap
Subtype.val_injective
exists_basis_of_span_of_maximalIdeal_rTensor_injective πŸ“–mathematicalTensorProduct
CommRing.toCommSemiring
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
IsLocalRing.maximalIdeal
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
Submodule.subtype
Submodule.span
Set.range
Top.top
Submodule.instTop
Basis
Basis.instFunLike
β€”RingHomSurjective.ids
TensorProduct.smulCommClass_left
smulCommClass_self
IsLocalRing.map_tensorProduct_mk_eq_top
instFiniteOfFinitePresentation
Algebra.to_smulCommClass
eq_top_iff
Set.Subset.trans
Submodule.top_coe
SetLike.coe_subset_coe
instIsConcreteLE
Set.range_comp
Submodule.span_image
Submodule.span_subset_span
TensorProduct.isScalarTower_left
IsScalarTower.right
exists_linearIndependent'
exists_basis_of_basis_baseChange
free_of_flat_of_finrank_eq πŸ“–mathematicalfinrank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
MaximalSpectrum.asIdeal
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
AddCommGroup.toAddCommMonoid
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Ideal.Quotient.semiring
TensorProduct.addCommMonoid
TensorProduct.leftModule
Algebra.to_smulCommClass
Ideal.instAlgebraQuotient
Algebra.id
Freeβ€”Algebra.to_smulCommClass
nonempty_basis_of_flat_of_finrank_eq
Free.of_basis
free_of_flat_of_isLocalRing πŸ“–mathematicalβ€”Free
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”Algebra.to_smulCommClass
Free.of_divisionRing
Ideal.instIsTwoSided_1
TensorProduct.smulCommClass_left
smulCommClass_self
Function.Surjective.comp_left
TensorProduct.mk_surjective
Quotient.mk_surjective
Free.of_basis
IsLocalRing.linearIndependent_of_flat
Basis.linearIndependent
Eq.ge
IsLocalRing.span_eq_top_of_tmul_eq_basis
free_of_lTensor_residueField_injective πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Function.Exact
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
IsLocalRing.ResidueField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
Algebra.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.lTensor
Freeβ€”finitePresentation_of_free_of_surjective
RingHomSurjective.ids
Function.Exact.linearMap_ker_eq
LinearMap.range_eq_map
Submodule.FG.map
Finite.fg_top
free_of_maximalIdeal_rTensor_injective
lTensor_injective_of_exact_of_exact_of_rTensor_injective
LinearMap.exact_subtype_mkQ
Submodule.mkQ_surjective
Flat.lTensor_preserves_injective_linearMap
Flat.of_free
Subtype.val_injective
free_of_maximalIdeal_rTensor_injective πŸ“–mathematicalTensorProduct
CommRing.toCommSemiring
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SetLike.instMembership
Submodule.setLike
IsLocalRing.maximalIdeal
Submodule.addCommMonoid
AddCommGroup.toAddCommMonoid
Submodule.module
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
Submodule.subtype
Freeβ€”exists_basis_of_span_of_maximalIdeal_rTensor_injective
Set.range_id
Submodule.span_univ
Free.of_basis
mem_support_iff_nontrivial_residueField_tensorProduct πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
Set
Set.instMembership
support
Nontrivial
TensorProduct
Ideal.ResidueField
PrimeSpectrum.asIdeal
PrimeSpectrum.isPrime
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Localization.AtPrime
OreLocalization.instCommRing
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
AddCommGroup.toAddCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
OreLocalization.instAlgebra
Algebra.id
β€”PrimeSpectrum.isPrime
RingHomInvPair.ids
Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.right
IsLocalRing.instIsScalarTowerResidueField
Equiv.nontrivial_congr
mem_support_iff
not_iff_not
not_nontrivial_iff_subsingleton
IsLocalRing.subsingleton_tensorProduct
Finite.base_change
nonempty_basis_of_flat_of_finrank_eq πŸ“–mathematicalfinrank
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
MaximalSpectrum.asIdeal
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
AddCommGroup.toAddCommMonoid
Submodule.Quotient.module
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Ideal.Quotient.semiring
TensorProduct.addCommMonoid
TensorProduct.leftModule
Algebra.to_smulCommClass
Ideal.instAlgebraQuotient
Algebra.id
Basisβ€”Algebra.to_smulCommClass
commRing_strongRankCondition
IsLocalRing.toNontrivial
MaximalSpectrum.isMaximal
Field.instIsLocalRing
Free.of_divisionRing
Finite.base_change
TensorProduct.smulCommClass_left
smulCommClass_self
RingHomInvPair.ids
bijective_of_isLocalized_maximal
Ideal.IsMaximal.isPrime'
IsScalarTower.right
instIsLocalizedModuleFinsuppLinearMap
instIsLocalizedModuleLinearMapOfIsLocalization
Localization.isLocalization
IsLocalization.tensorProduct_isLocalizedModule
LinearMap.CompatibleSMul.finsupp_dom
LinearMap.IsScalarTower.compatibleSMul'
TensorProduct.isScalarTower_left
IsLocalizedModule.map_linearCombination
LinearMap.coe_restrictScalars
IsLocalRing.linearCombination_bijective_of_flat
Localization.AtPrime.isLocalRing
Flat.instTensorProduct
Flat.of_free
Free.self
IsScalarTower.to_smulCommClass
IsLocalRing.instIsScalarTowerResidueField
Equiv.comp_bijective
instIsScalarTowerQuotientIdealResidueField
RingHomCompTriple.ids
IsScalarTower.left
Finsupp.induction_linear
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
map_add
SemilinearMapClass.toAddHomClass
Finsupp.linearCombination_single
mul_one
one_smul
TensorProduct.finsuppScalarRight_symm_apply_single
Basis.repr_symm_apply
LinearEquiv.bijective
Ideal.pi_tensorProductMk_quotient_surjective
Ideal.isCoprime_of_isMaximal
Iff.ne
MaximalSpectrum.ext_iff

Module.IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
linearCombination_bijective_of_flat πŸ“–β€”Function.Bijective
Finsupp
IsLocalRing.ResidueField
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.toModule
IsLocalRing.ResidueField.algebra
Algebra.id
DFunLike.coe
LinearMap
RingHom.id
Finsupp.instAddCommMonoid
TensorProduct.addCommMonoid
Finsupp.module
Semiring.toModule
TensorProduct.leftModule
Algebra.to_smulCommClass
LinearMap.instFunLike
Finsupp.linearCombination
CommSemiring.toSemiring
TensorProduct.instModule
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”β€”Algebra.to_smulCommClass
TensorProduct.smulCommClass_left
smulCommClass_self
linearIndependent_of_flat
RingHomSurjective.ids
LinearMap.range_eq_top
Finsupp.range_linearCombination
IsLocalRing.span_eq_top_of_tmul_eq_basis
linearIndependent_of_flat πŸ“–β€”LinearIndependent
IsLocalRing.ResidueField
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
AddCommGroup.toAddCommMonoid
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsLocalRing.ResidueField.field
IsLocalRing.ResidueField.algebra
Algebra.id
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
β€”β€”TensorProduct.smulCommClass_left
smulCommClass_self
Algebra.to_smulCommClass
linearIndependent_iff'
Finset.induction
Finset.notMem_empty
Module.Flat.isTrivialRelation_of_sum_smul_eq_zero
Finset.sum_coe_sort
IsScalarTower.left
LinearIndependent.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finset.mem_insert_self
Mathlib.Tactic.Contrapose.contraposeβ‚‚
sum_mem
Submodule.addSubmonoidClass
Submodule.smul_mem_smul
mul_assoc
IsUnit.val_inv_mul
mul_one
eq_neg_iff_add_eq_zero
Finset.sum_congr
Finset.sum_insert
Finset.mem_insert
Finset.sum_eq_zero
Ideal.instIsTwoSided_1
TensorProduct.tmul_add
TensorProduct.tmul_smul
TensorProduct.CompatibleSMul.isScalarTower
IsLocalRing.instIsScalarTowerResidueField
IsScalarTower.right
AddLeftCancelSemigroup.toIsLeftCancelAdd
linearIndependent_add_smul_iff
neg_zero
MulZeroClass.zero_mul
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
smul_add
Finset.sum_add_distrib
smul_smul
Finset.sum_smul
Finset.sum_mul
mul_neg
Finset.sum_neg_distrib
add_comm

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
lTensor_injective_of_exact_of_exact_of_rTensor_injective πŸ“–β€”Function.Exact
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.rTensor
LinearMap.lTensor
β€”β€”injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.rTensor_surjective
RingHomCompTriple.ids
LinearMap.comp_apply
LinearMap.rTensor_comp_lTensor
LinearMap.lTensor_comp_rTensor
rTensor_exact
LinearMap.lTensor_comp
Function.Exact.linearMap_comp_eq_zero
LinearMap.lTensor_zero
map_zero
AddMonoidHomClass.toZeroHomClass
lTensor_exact
LinearMap.rTensor_comp
LinearMap.rTensor_zero

---

← Back to Index