Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/LocalRing/ResidueField/Basic.lean

Statistics

MetricCount
Definitionsalgebra, instAlgebra, instMulSemiringAction, map, mapAut, mapEquiv
6
TheoremsalgebraMap_eq, algebraMap_residue, finite_of_finite, finite_of_module_finite, instIsScalarTower, instIsScalarTower_1, instLiesOverMaximalIdeal, lift_comp_residue, lift_residue_apply, mapAut_apply, mapEquiv_apply, mapEquiv_refl, mapEquiv_trans, map_comp, map_comp_residue, map_id, map_id_apply, map_map, map_residue, residue_smul, instFiniteResidueField, instIsLocalHomResidueFieldRingHomResidue, instIsScalarTowerResidueField, isLocalHom_residue, ker_residue, residue_def, residue_eq_zero_iff, residue_ne_zero_iff_isUnit, residue_surjective
29
Total35

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteResidueField πŸ“–mathematicalβ€”Module.Finite
ResidueField
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingResidueField
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
β€”Module.Finite.of_surjective
RingHomSurjective.ids
instIsScalarTowerResidueField
IsScalarTower.right
Ideal.Quotient.mk_surjective
Ideal.instIsTwoSided_1
instIsLocalHomResidueFieldRingHomResidue πŸ“–mathematicalβ€”IsLocalHom
ResidueField
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
residue
β€”Iff.not
Ideal.Quotient.eq_zero_iff_mem
isUnit_iff_ne_zero
instIsScalarTowerResidueField πŸ“–mathematicalβ€”IsScalarTower
ResidueField
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
ResidueField.algebra
β€”Ideal.Quotient.isScalarTower
isLocalHom_residue πŸ“–mathematicalβ€”IsLocalHom
ResidueField
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
residue
β€”instIsLocalHomResidueFieldRingHomResidue
ker_residue πŸ“–mathematicalβ€”RingHom.ker
ResidueField
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
RingHom.instFunLike
RingHom.instRingHomClass
residue
maximalIdeal
β€”Ideal.mk_ker
residue_def πŸ“–mathematicalβ€”DFunLike.coe
RingHom
ResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
RingHom.instFunLike
residue
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
maximalIdeal
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
β€”β€”
residue_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
ResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
RingHom.instFunLike
residue
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingResidueField
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
maximalIdeal
β€”RingHom.instRingHomClass
RingHom.mem_ker
ker_residue
residue_ne_zero_iff_isUnit πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
residue_surjective πŸ“–mathematicalβ€”ResidueField
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
ResidueField.field
RingHom.instFunLike
residue
β€”Ideal.Quotient.mk_surjective

IsLocalRing.ResidueField

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
64 mathmath: PrimeSpectrum.preimageEquivFiber_symm_apply_coe, PrimeSpectrum.residueField_specComap, Ideal.exists_mem_span_singleton_map_residueField_eq, Ideal.ker_algebraMap_residueField, Polynomial.fiberEquivQuotient_tmul, Module.rankAtStalk_eq, instLiesOverFiberOfIsPrime, Ideal.algebraMap_quotient_residueField_mk, Algebra.QuasiFinite.instResidueField, instIsLocalRingTensorProductResidueFieldOfIsLocalHomRingHomAlgebraMap, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, Algebra.FormallySmooth.iff_injective_cotangentComplexBaseChange_residueField, PrimeSpectrum.coe_preimageOrderIsoFiber_symm_apply_coe_asIdeal, Algebra.FormallySmooth.iff_injective_lTensor_residueField, Ideal.Fiber.lift_residueField_surjective, Ideal.algebraMap_residueField_surjective, IsLocalRing.map_tensorProduct_mk_eq_top, Ideal.ResidueField.ringHom_ext_iff, Ideal.surjectiveOnStalks_residueField, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, PrimeSpectrum.mem_image_comap_basicOpen, Ideal.ResidueField.liftₐ_comp_toAlgHom, Algebra.QuasiFinite.finite_fiber, Ideal.ResidueField.map_algebraMap, algebraMap_mk, AlgebraicGeometry.Scheme.Spec.residue_residueFieldIso_hom_assoc, Ideal.ResidueField.exists_smul_eq_tmul_one, PrimeSpectrum.residueField_comap, Algebra.IsUnramifiedAt.not_minpoly_sq_dvd, instLiesOverResidueFieldBotIdeal, IsLocalRing.split_injective_iff_lTensor_residueField_injective, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv, algebraMap_eq, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace, instEssFiniteTypeResidueField, Ideal.ResidueField.algHom_ext_iff, Ideal.ResidueField.lift_algebraMap, isNilpotent_tensor_residueField_iff, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, Module.mem_support_iff_nontrivial_residueField_tensorProduct, instFiniteResidueField, instIsScalarTower, instIsScalarTowerQuotientIdealResidueField, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, AlgebraicGeometry.Scheme.Spec.algebraMap_residueFieldIso_inv_assoc, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, PrimeSpectrum.coe_primesOverOrderIsoFiber_symm_apply_coe, IsLocalRing.subsingleton_tensorProduct, IsLocalRing.instFiniteResidueField, PrimeSpectrum.mem_image_comap_zeroLocus_sdiff, Polynomial.residueFieldMapCAlgEquiv_symm_X, Ideal.algebraMap_residueField_eq_zero, Ideal.ResidueField.liftₐ_algebraMap, Algebra.QuasiFinite.instIsArtinianRingFiber, IsLocalRing.instIsScalarTowerResidueField, Polynomial.residueFieldMapCAlgEquiv_algebraMap, Ideal.Fiber.exists_smul_eq_one_tmul, AlgebraicGeometry.Scheme.Spec.residue_residueFieldIso_hom, Ideal.ResidueField.mapₐ_apply, PrimeSpectrum.nontrivial_iff_mem_rangeComap, Algebra.instFormallyUnramifiedResidueField
instAlgebra πŸ“–CompOp
25 mathmath: Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, Algebra.instIsSeparableResidueFieldOfFormallyUnramified, algebraMap_residue, instIsAlgebraicResidueFieldOfIsIntegral, Algebra.instFiniteResidueFieldOfQuasiFiniteAt, Algebra.WeaklyQuasiFiniteAt.finite_residueField, Algebra.FormallyUnramified.iff_map_maximalIdeal_eq, instEssFiniteTypeResidueField_1, Ideal.Fiber.lift_residueField_surjective, Algebra.instFiniteResidueFieldOfFormallyUnramified, Algebra.instFormallyUnramifiedResidueField_1, instIsSeparableResidueFieldOfQuotientIdeal, instIsScalarTower_1, Algebra.QuasiFinite.instFiniteResidueField, Algebra.isUnramifiedAt_iff_map_eq, Algebra.instFiniteResidueFieldOfIsUnramifiedAt, Algebra.instIsSeparableResidueFieldOfIsUnramifiedAt, finite_of_module_finite, instIsScalarTower, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, Polynomial.residueFieldMapCAlgEquiv_symm_X, Algebra.isSeparable_residueField_iff, Polynomial.residueFieldMapCAlgEquiv_algebraMap, Valuation.HasExtension.algebraMap_residue_eq_residue_algebraMap, Polynomial.residueFieldMapCAlgEquiv_symm_C
instMulSemiringAction πŸ“–CompOp
1 mathmath: residue_smul
map πŸ“–CompOp
8 mathmath: map_comp, RingHom.EssFiniteType.residueFieldMap, map_comp_residue, mapEquiv_apply, map_map, map_residue, map_id, map_id_apply
mapAut πŸ“–CompOp
1 mathmath: mapAut_apply
mapEquiv πŸ“–CompOp
5 mathmath: mapEquiv_refl, mapEquiv_apply, mapEquiv_trans, mapAut_apply, mapEquiv.symm

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_eq πŸ“–mathematicalβ€”algebraMap
IsLocalRing.ResidueField
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
algebra
Algebra.id
IsLocalRing.residue
β€”β€”
algebraMap_residue πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
field
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
instAlgebra
CommRing.toCommSemiring
IsLocalRing.residue
β€”β€”
finite_of_finite πŸ“–mathematicalβ€”Finite
IsLocalRing.ResidueField
β€”Module.finite_of_finite
finite_of_module_finite
finite_of_module_finite πŸ“–mathematicalβ€”Module.Finite
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Algebra.toModule
Semifield.toCommSemiring
instAlgebra
β€”Module.Finite.of_restrictScalars_finite
instIsScalarTower
IsScalarTower.left
IsLocalRing.instFiniteResidueField
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
IsLocalRing.ResidueField
Algebra.toSMul
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
algebra
Semifield.toCommSemiring
instAlgebra
β€”Ideal.Quotient.isScalarTower_of_liesOver
instLiesOverMaximalIdeal
instIsScalarTower_1 πŸ“–mathematicalβ€”IsScalarTower
IsLocalRing.ResidueField
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
field
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebra
β€”IsScalarTower.of_algebraMap_eq
IsLocalRing.residue_surjective
instLiesOverMaximalIdeal πŸ“–mathematicalβ€”Ideal.LiesOver
CommRing.toCommSemiring
CommSemiring.toSemiring
IsLocalRing.maximalIdeal
β€”RingHom.instRingHomClass
List.TFAE.out
IsLocalRing.local_hom_TFAE
lift_comp_residue πŸ“–mathematicalβ€”RingHom.comp
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
lift
IsLocalRing.residue
β€”RingHom.ext
lift_residue_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
RingHom.instFunLike
lift
CommSemiring.toSemiring
CommRing.toCommSemiring
IsLocalRing.residue
β€”β€”
mapAut_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
RingAut
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
IsLocalRing.ResidueField
IsLocalRing.instCommRingResidueField
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
RingAut.instGroup
MonoidHom.instFunLike
mapAut
mapEquiv
β€”β€”
mapEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
IsLocalRing.ResidueField
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalRing.instCommRingResidueField
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mapEquiv
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
RingHom.instFunLike
map
RingHomClass.toRingHom
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
mapEquiv_refl πŸ“–mathematicalβ€”mapEquiv
RingEquiv.refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
IsLocalRing.ResidueField
IsLocalRing.instCommRingResidueField
β€”RingEquiv.toRingHom_injective
map_id
mapEquiv_trans πŸ“–mathematicalβ€”mapEquiv
RingEquiv.trans
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
IsLocalRing.ResidueField
IsLocalRing.instCommRingResidueField
β€”RingEquiv.toRingHom_injective
map_comp
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
isLocalHom_toRingHom
isLocalHom_equiv
RingEquivClass.toMulEquivClass
map_comp πŸ“–mathematicalβ€”map
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.isLocalHom_comp
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
β€”Ideal.Quotient.ringHom_ext
Ideal.instIsTwoSided_1
RingHom.isLocalHom_comp
RingHom.ext
map_comp_residue πŸ“–mathematicalβ€”RingHom.comp
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
map
IsLocalRing.residue
β€”β€”
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
isLocalHom_id
IsLocalRing.ResidueField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
β€”Ideal.Quotient.ringHom_ext
Ideal.instIsTwoSided_1
isLocalHom_id
RingHom.ext
map_id_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
RingHom.instFunLike
map
RingHom.id
CommSemiring.toSemiring
CommRing.toCommSemiring
isLocalHom_id
β€”DFunLike.congr_fun
isLocalHom_id
map_id
map_map πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
RingHom.instFunLike
map
RingHom.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.isLocalHom_comp
β€”DFunLike.congr_fun
RingHom.isLocalHom_comp
map_comp
map_residue πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
RingHom.instFunLike
map
CommSemiring.toSemiring
CommRing.toCommSemiring
IsLocalRing.residue
β€”β€”
residue_smul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IsLocalRing.ResidueField
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
RingHom.instFunLike
IsLocalRing.residue
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulSemiringAction.toDistribMulAction
Ring.toSemiring
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivisionSemiring.toGroupWithZero
instSMulZeroClass
MulSemiringAction.toMulDistribMulAction
instMulSemiringAction
β€”β€”

---

← Back to Index