Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Localization/AtPrime/Basic.lean

Statistics

MetricCount
DefinitionsequivQuotMaximalIdeal, equivQuotientMapMaximalIdeal, orderIsoOfPrime, primeSpectrumOrderIso, instAlgebraOfLiesOver, mapPiEvalRingHom, localAlgHom, localRingHom, equivQuotMaximalIdealOfIsLocalization
9
Theoremsof_isLocalization_of_disjoint, isPrime_map_of_isLocalizationAtPrime, under_map_of_isLocalizationAtPrime, coe_orderIsoOfPrime_apply_coe, coe_orderIsoOfPrime_symm_apply_coe, coe_primeSpectrumOrderIso_apply_coe_asIdeal, coe_primeSpectrumOrderIso_symm_apply_asIdeal, comap_map_eq_map, comap_map_of_isMaximal, comap_maximalIdeal, equivQuotMaximalIdeal_apply_mk, equivQuotMaximalIdeal_symm_apply_mk, faithfulSMul, isLocalRing, isMaximal_map, isPrime_map_of_liesOver, isUnit_mk'_iff, isUnit_to_map_iff, liesOver_maximalIdeal, map_eq_maximalIdeal, mk'_mem_maximal_iff, nontrivial, to_map_mem_maximal_iff, isDomain_of_atPrime, isDomain_of_local_atPrime, liesOver_of_isPrime_of_disjoint, subsingleton_primeSpectrum_of_mem_minimalPrimes, comap_maximalIdeal, eq_maximalIdeal_iff_comap_eq, instIsScalarTower, instIsScalarTower_1, isLocalRing, mapPiEvalRingHom_algebraMap_apply, mapPiEvalRingHom_bijective, mapPiEvalRingHom_comp_algebraMap, map_eq_maximalIdeal, instFaithfulSMulAtPrimeOfNoZeroDivisors, instIsTorsionFreeAtPrimeAlgebraMapSubmonoidPrimeComplOfIsDomain, isLocalHom_localRingHom, le_comap_primeCompl_iff, localAlgHom_apply, localRingHom_bijective_of_saturated_inf_eq_top, localRingHom_comp, localRingHom_id, localRingHom_mk', localRingHom_to_map, localRingHom_unique
47
Total56

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime_map_of_isLocalizationAtPrime πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsPrime
map
RingHom
RingHom.instFunLike
algebraMap
β€”compl_compl
instIsConcreteLE
IsLocalization.isPrime_of_isPrime_disjoint
under_map_of_isLocalizationAtPrime πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
under
map
RingHom
RingHom.instFunLike
algebraMap
β€”compl_compl
instIsConcreteLE
IsLocalization.comap_map_of_isPrime_disjoint

Ideal.IsMaximal

Theorems

NameKindAssumesProvesValidatesDepends On
of_isLocalization_of_disjoint πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
β€”RingHom.instRingHomClass
Ideal.exists_le_maximal
ne_top
Ideal.comap_top
IsLocalization.map_comap
eq_of_le
Ideal.IsPrime.ne_top
Ideal.IsPrime.under
isPrime'
Ideal.comap_mono
Ideal.under_def

IsLocalization

Theorems

NameKindAssumesProvesValidatesDepends On
isDomain_of_atPrime πŸ“–mathematicalβ€”IsDomain
CommSemiring.toSemiring
β€”isDomain_of_le_nonZeroDivisors
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
isDomain_of_local_atPrime πŸ“–mathematicalβ€”IsDomain
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instSemiring
CommSemiring.toSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
β€”isDomain_localization
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
liesOver_of_isPrime_of_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instSetLike
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.LiesOver
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”Ideal.under_under
RingHom.instRingHomClass
Ideal.under_def
comap_map_of_isPrime_disjoint
Ideal.LiesOver.over
map_comap
subsingleton_primeSpectrum_of_mem_minimalPrimes πŸ“–mathematicalIdeal
CommSemiring.toSemiring
Set
Set.instMembership
minimalPrimes
PrimeSpectrumβ€”PrimeSpectrum.ext
Minimal.eq_of_le
minimalPrimes_eq_minimals
PrimeSpectrum.isPrime
Equiv.subsingleton
Unique.instSubsingleton

IsLocalization.AtPrime

Definitions

NameCategoryTheorems
equivQuotMaximalIdeal πŸ“–CompOp
4 mathmath: equivQuotMaximalIdeal_apply_mk, algebraMap_equivQuotMaximalIdeal_symm_apply, trace_quotient_eq_trace_localization_quotient, equivQuotMaximalIdeal_symm_apply_mk
equivQuotientMapMaximalIdeal πŸ“–CompOp
1 mathmath: equivQuotientMapMaximalIdeal_apply_mk
orderIsoOfPrime πŸ“–CompOp
2 mathmath: coe_orderIsoOfPrime_apply_coe, coe_orderIsoOfPrime_symm_apply_coe
primeSpectrumOrderIso πŸ“–CompOp
2 mathmath: coe_primeSpectrumOrderIso_symm_apply_asIdeal, coe_primeSpectrumOrderIso_apply_coe_asIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
coe_orderIsoOfPrime_apply_coe πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
Ideal
Ideal.IsPrime
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
DFunLike.coe
RelIso
RelIso.instFunLike
orderIsoOfPrime
Set.preimage
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
coe_orderIsoOfPrime_symm_apply_coe πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
Ideal
Ideal.IsPrime
DFunLike.coe
RelIso
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
RelIso.instFunLike
RelIso.symm
orderIsoOfPrime
Set.iInter
Set
Set.instHasSubset
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Ideal.primeCompl
OrderIso
Set.instMembership
instFunLikeOrderIso
OrderIso.symm
OrderIso.setCongr
Set.preimage
RingHom
RingHom.instFunLike
algebraMap
β€”Set.iInter_congr_Prop
coe_primeSpectrumOrderIso_apply_coe_asIdeal πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
PrimeSpectrum.asIdeal
PrimeSpectrum
Set
Set.instMembership
Set.Iic
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
DFunLike.coe
RelIso
Set.Elem
Preorder.toLE
RelIso.instFunLike
primeSpectrumOrderIso
Set.preimage
RingHom
RingHom.instFunLike
algebraMap
Ideal
β€”β€”
coe_primeSpectrumOrderIso_symm_apply_asIdeal πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.setLike
PrimeSpectrum.asIdeal
DFunLike.coe
RelIso
Set.Elem
PrimeSpectrum
Set.Iic
PartialOrder.toPreorder
PrimeSpectrum.instPartialOrder
Preorder.toLE
Set
Set.instMembership
RelIso.instFunLike
RelIso.symm
primeSpectrumOrderIso
Set.iInter
Set.instHasSubset
Ideal
Ideal.IsPrime
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Ideal.primeCompl
OrderIso
Submodule.instPartialOrder
instFunLikeOrderIso
OrderIso.symm
OrderIso.setCongr
Set.preimage
RingHom
RingHom.instFunLike
algebraMap
β€”Set.iInter_congr_Prop
comap_map_eq_map πŸ“–mathematicalβ€”Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal.map
β€”Ideal.IsMaximal.isPrime'
RingHom.instRingHomClass
IsScalarTower.algebraMap_eq
Ideal.map_map
LE.le.antisymm
Ideal.le_comap_map
IsLocalization.mem_map_algebraMap_iff
IsLocalization.eq_iff_exists
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Subtype.prop
Algebra.smul_def
Submonoid.coe_mul
mul_assoc
mul_comm
Ideal.mul_mem_left
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
Ideal.Quotient.eq_zero_iff_mem
map_sub
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
inv_mul_cancelβ‚€
sub_self
add_sub_cancel
Submodule.add_mem_iff_left
Ideal.mul_mem_right
Ideal.mem_map_of_mem
one_smul
add_smul
smul_smul
comap_map_of_isMaximal πŸ“–mathematicalβ€”Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
Ideal.map
β€”Ideal.comap_map_eq_self_of_isMaximal
Ideal.IsPrime.ne_top
isPrime_map_of_liesOver
Ideal.IsMaximal.isPrime'
comap_maximalIdeal πŸ“–mathematicalβ€”Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
IsLocalRing.maximalIdeal
β€”Ideal.ext
RingHom.instRingHomClass
to_map_mem_maximal_iff
isLocalRing
equivQuotMaximalIdeal_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
IsLocalRing.maximalIdeal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivQuotMaximalIdeal
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
algebraMap
β€”Ideal.IsMaximal.isPrime'
Ideal.instIsTwoSided_1
equivQuotMaximalIdeal_symm_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
IsLocalRing.maximalIdeal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
equivQuotMaximalIdeal
RingHom
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
IsLocalization.mk'
Ideal.primeCompl
Ideal.IsMaximal.isPrime'
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Ideal.Quotient.field
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”Ideal.IsMaximal.isPrime'
Ideal.instIsTwoSided_1
Ideal.mem_primeCompl_iff
Subtype.prop
RingEquiv.map_ne_zero_iff
RingEquiv.symm_apply_eq
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Ideal.Quotient.isDomain
IsLocalRing.maximalIdeal.isMaximal
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
mul_assoc
inv_mul_cancelβ‚€
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
mul_one
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsLocalization.mk'_spec
Ideal.Quotient.mk_algebraMap
faithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”faithfulSMul_iff_algebraMap_injective
IsLocalization.injective_iff_isRegular
IsRegular.of_ne_zero
NoZeroDivisors.to_isCancelMulZero
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
isLocalRing πŸ“–mathematicalβ€”IsLocalRing
CommSemiring.toSemiring
β€”IsLocalRing.of_nonunits_add
nontrivial
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
not_imp_comm
IsLocalization.mk'_mul_mk'_eq_one'
IsLocalization.exists_mk'_eq
Submonoid.one_mem
IsLocalization.eq
IsLocalization.mk'_self
IsLocalization.mk'_mul
IsLocalization.mk'_add
one_mul
mul_one
Ideal.mul_mem_left
Ideal.mul_mem_right
Ideal.instIsTwoSided
Ideal.add_mem
Ideal.IsPrime.mem_or_mem
isMaximal_map πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”map_eq_maximalIdeal
IsLocalRing.maximalIdeal.isMaximal
isPrime_map_of_liesOver πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”IsLocalization.isPrime_of_isPrime_disjoint
Ideal.disjoint_primeCompl_of_liesOver
isUnit_mk'_iff πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
IsLocalization.mk'
Ideal.primeCompl
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
β€”isLocalRing
IsLocalization.mk'_mem_iff
to_map_mem_maximal_iff
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
IsLocalization.mk'_mul_mk'_eq_one
isUnit_to_map_iff πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
Ideal.primeCompl
β€”Ideal.IsPrime.ne_top
IsLocalization.isPrime_of_isPrime_disjoint
disjoint_compl_left
Ideal.eq_top_of_isUnit_mem
Ideal.mem_map_of_mem
IsLocalization.map_units
liesOver_maximalIdeal πŸ“–mathematicalβ€”Ideal.LiesOver
CommSemiring.toSemiring
IsLocalRing.maximalIdeal
β€”Ideal.liesOver_iff
RingHom.instRingHomClass
isLocalRing
comap_maximalIdeal
map_eq_maximalIdeal πŸ“–mathematicalβ€”Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IsLocalRing.maximalIdeal
β€”RingHom.instRingHomClass
isLocalRing
IsLocalization.map_comap
comap_maximalIdeal
mk'_mem_maximal_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
IsLocalization.mk'
Ideal.primeCompl
β€”not_iff_not
isUnit_mk'_iff
nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”nontrivial_of_ne
IsLocalization.eq_iff_exists
RingHom.map_zero
RingHom.map_one
mul_one
MulZeroClass.mul_zero
Ideal.zero_mem
to_map_mem_maximal_iff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsLocalRing.maximalIdeal
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
β€”not_iff_not
isUnit_to_map_iff

Localization

Definitions

NameCategoryTheorems
localAlgHom πŸ“–CompOp
1 mathmath: localAlgHom_apply
localRingHom πŸ“–CompOp
25 mathmath: localRingHom_mk', AlgebraicGeometry.localRingHom_comp_stalkIso_apply, localRingHom_to_map, localRingHom_injective_of_primesOver_eq_singleton, AlgebraicGeometry.stalkwise_SpecMap_iff, AlgebraicGeometry.StructureSheaf.comap_apply, localRingHom_id, localAlgHom_apply, RingHom.surjective_localRingHom_of_surjective, RingHom.HoldsForLocalization.localRingHom, AlgebraicGeometry.stalkwise_Spec_map_iff, localRingHom_unique, RingHom.Flat.localRingHom, RingHom.SurjectiveOnStalks.localRingHom_surjective, localRingHom_bijective_of_saturated_inf_eq_top, localRingHom_comp, isLocalHom_localRingHom, localRingHom_bijective_of_not_conductor_le, localRingHom_surjective_of_primesOver_eq_singleton, AlgebraicGeometry.StructureSheaf.comapβ‚—_eq_localRingHom, RingHom.surjectiveOnStalks_iff_forall_maximal, AlgebraicGeometry.localRingHom_comp_stalkIso, AlgebraicGeometry.Scheme.localRingHom_comp_stalkIso, AlgebraicGeometry.Scheme.localRingHom_comp_stalkIso_apply, RingHom.surjective_localRingHom_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulSMulAtPrimeOfNoZeroDivisors πŸ“–mathematicalβ€”FaithfulSMul
AtPrime
CommRing.toCommSemiring
OreLocalization.instSMulOfIsScalarTower
CommMonoid.toMonoid
CommSemiring.toCommMonoid
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
Monoid.toMulAction
Algebra.toSMul
Algebra.id
IsScalarTower.right
β€”IsLocalization.AtPrime.faithfulSMul
isLocalization
instIsTorsionFreeAtPrimeAlgebraMapSubmonoidPrimeComplOfIsDomain πŸ“–mathematicalβ€”Module.IsTorsionFree
AtPrime
CommRing.toCommSemiring
Localization
CommRing.toCommMonoid
Algebra.algebraMapSubmonoid
CommSemiring.toSemiring
Ideal.primeCompl
OreLocalization.instSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instAddCommMonoidOreLocalization
CommMonoid.toMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
Algebra.toModule
OreLocalization.instCommSemiring
instAlgebraLocalizationAlgebraMapSubmonoid
β€”Module.IsTorsionFree.of_isLocalization
IsLocalization.isDomain_of_local_atPrime
OreLocalization.instIsScalarTower
IsScalarTower.right
instIsScalarTowerLocalizationAlgebraMapSubmonoid
Ideal.primeCompl_le_nonZeroDivisors
IsDomain.to_noZeroDivisors
isLocalization
isLocalHom_localRingHom πŸ“–mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
IsLocalHom
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instMonoid
CommMonoid.toMonoid
localRingHom
β€”RingHom.instRingHomClass
isLocalization
IsLocalization.exists_mk'_eq
IsLocalization.AtPrime.isUnit_mk'_iff
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
le_comap_primeCompl_iff
ge_of_eq
localRingHom_mk'
SetLike.ext_iff
le_comap_primeCompl_iff πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Ideal.primeCompl
Submonoid.comap
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Ideal
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.comap
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Mathlib.Tactic.Contrapose.contrapose₁
localAlgHom_apply πŸ“–mathematicalIdeal.comap
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
DFunLike.coe
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instAlgebra
localAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
localRingHom
AlgHom.toRingHom
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
localRingHom_bijective_of_saturated_inf_eq_top πŸ“–mathematicalSubalgebra.saturation
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Submonoid.instMin
Ideal.primeCompl
Subsemiring.toSubmonoid
Subalgebra.toSubsemiring
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Function.Bijective
AtPrime
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toCommSemiring
DFunLike.coe
RingHom
OreLocalization.instSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
RingHom.instFunLike
localRingHom
algebraMap
Subalgebra.toAlgebra
Algebra.id
Ideal.over_def
β€”Ideal.over_def
Eq.ge
Set.mem_univ
Ideal.IsPrime.mul_notMem
mul_assoc
isLocalization
Ideal.primeCompl.congr_simp
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
le_comap_primeCompl_iff
ge_of_eq
Function.Surjective.forall
IsLocalization.mk'_surjective
localRingHom_mk'
IsLocalization.eq_iff_exists
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
Submonoid.mul_mem
Submonoid.instSubmonoidClass
Submonoid.one_mem
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Function.Surjective.exists
localRingHom_comp πŸ“–mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
localRingHom
RingHom.comp
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
β€”RingHom.instRingHomClass
localRingHom_unique
localRingHom_to_map
localRingHom_id πŸ“–mathematicalβ€”localRingHom
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ideal
Ideal.comap
RingHom
RingHom.instFunLike
RingHom.instRingHomClass
Ideal.comap_id
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
β€”localRingHom_unique
RingHom.instRingHomClass
Ideal.comap_id
localRingHom_mk' πŸ“–mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
DFunLike.coe
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
localRingHom
IsLocalization.mk'
OreLocalization.instCommSemiring
OreLocalization.instAlgebra
Algebra.id
isLocalization
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Submonoid.comap
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Ideal
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
le_comap_primeCompl_iff
ge_of_eq
β€”RingHom.instRingHomClass
IsLocalization.map_mk'
localRingHom_to_map πŸ“–mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
DFunLike.coe
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
localRingHom
algebraMap
OreLocalization.instAlgebra
Algebra.id
β€”RingHom.instRingHomClass
IsLocalization.map_eq
localRingHom_unique πŸ“–mathematicalIdeal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.instRingHomClass
DFunLike.coe
AtPrime
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
algebraMap
OreLocalization.instAlgebra
Algebra.id
localRingHomβ€”RingHom.instRingHomClass
IsLocalization.map_unique

Localization.AtPrime

Definitions

NameCategoryTheorems
instAlgebraOfLiesOver πŸ“–CompOp
22 mathmath: Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, instIsAlgebraicResidueFieldOfIsIntegral, Algebra.instFiniteResidueFieldOfQuasiFiniteAt, Algebra.WeaklyQuasiFiniteAt.finite_residueField, instIsLocalHomAtPrimeRingHomAlgebraMap, instEssFiniteTypeResidueField_1, Ideal.Fiber.lift_residueField_surjective, instIsSeparableResidueFieldOfQuotientIdeal, Algebra.QuasiFinite.instFiniteResidueField, Algebra.isUnramifiedAt_iff_map_eq, Localization.finite_of_primesOver_eq_singleton, Algebra.instFiniteResidueFieldOfIsUnramifiedAt, Algebra.instIsSeparableResidueFieldOfIsUnramifiedAt, instFlatAtPrime, instIsScalarTower_1, instIsScalarTower, Algebra.IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, Algebra.instFormallyUnramifiedAtPrimeOfIsUnramifiedAt, Polynomial.residueFieldMapCAlgEquiv_symm_X, Algebra.isSeparable_residueField_iff, Polynomial.residueFieldMapCAlgEquiv_algebraMap, Polynomial.residueFieldMapCAlgEquiv_symm_C
mapPiEvalRingHom πŸ“–CompOp
3 mathmath: mapPiEvalRingHom_bijective, mapPiEvalRingHom_comp_algebraMap, mapPiEvalRingHom_algebraMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
comap_maximalIdeal πŸ“–mathematicalβ€”Ideal.comap
Localization
CommSemiring.toCommMonoid
Ideal.primeCompl
CommSemiring.toSemiring
RingHom
Localization.AtPrime
Semiring.toNonAssocSemiring
OreLocalization.instSemiring
OreLocalization.oreSetComm
OreLocalization.instCommSemiring
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
RingHom.instRingHomClass
IsLocalRing.maximalIdeal
isLocalRing
β€”IsLocalization.AtPrime.comap_maximalIdeal
Localization.isLocalization
IsLocalization.AtPrime.isLocalRing
eq_maximalIdeal_iff_comap_eq πŸ“–mathematicalβ€”Ideal.comap
Localization.AtPrime
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
RingHom.instRingHomClass
IsLocalRing.maximalIdeal
OreLocalization.instCommSemiring
isLocalRing
β€”RingHom.instRingHomClass
isLocalRing
le_antisymm
IsLocalRing.le_maximalIdeal
Ideal.IsPrime.ne_top
Ideal.map_comap_le
comap_maximalIdeal
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
Localization.AtPrime
CommRing.toCommSemiring
OreLocalization.instSMulOfIsScalarTower
CommMonoid.toMonoid
CommSemiring.toCommMonoid
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
Monoid.toMulAction
Algebra.toSMul
IsScalarTower.right
OreLocalization.instCommSemiring
OreLocalization.instSemiring
instAlgebraOfLiesOver
β€”IsScalarTower.of_algebraMap_eq
IsScalarTower.algebraMap_apply
OreLocalization.instIsScalarTower
IsScalarTower.right
Localization.localRingHom_to_map
instIsScalarTower_1 πŸ“–mathematicalβ€”IsScalarTower
Localization.AtPrime
CommRing.toCommSemiring
Algebra.toSMul
OreLocalization.instCommSemiring
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
OreLocalization.instSemiring
instAlgebraOfLiesOver
β€”IsScalarTower.of_algebraMap_eq'
RingHom.instRingHomClass
Localization.localRingHom.congr_simp
isLocalRing πŸ“–mathematicalβ€”IsLocalRing
Localization
CommSemiring.toCommMonoid
Ideal.primeCompl
CommSemiring.toSemiring
OreLocalization.instSemiring
OreLocalization.oreSetComm
β€”IsLocalization.AtPrime.isLocalRing
Localization.isLocalization
mapPiEvalRingHom_algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Localization.AtPrime
Pi.commSemiring
Ideal.comap
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
Pi.evalRingHom
RingHom.instRingHomClass
Ideal.IsPrime.comap
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
mapPiEvalRingHom
algebraMap
OreLocalization.instAlgebra
Algebra.id
β€”Localization.localRingHom_to_map
mapPiEvalRingHom_bijective πŸ“–mathematicalβ€”Function.Bijective
Localization.AtPrime
Pi.commSemiring
Ideal.comap
RingHom
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
Pi.evalRingHom
RingHom.instRingHomClass
Ideal.IsPrime.comap
DFunLike.coe
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
mapPiEvalRingHom
β€”Localization.mapPiEvalRingHom_bijective
mapPiEvalRingHom_comp_algebraMap πŸ“–mathematicalβ€”RingHom.comp
Localization.AtPrime
Pi.commSemiring
Ideal.comap
RingHom
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
Pi.evalRingHom
RingHom.instRingHomClass
Ideal.IsPrime.comap
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
mapPiEvalRingHom
algebraMap
OreLocalization.instAlgebra
Algebra.id
β€”IsLocalization.map_comp
RingHom.instRingHomClass
Ideal.IsPrime.comap
map_eq_maximalIdeal πŸ“–mathematicalβ€”Ideal.map
Localization.AtPrime
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
OreLocalization.instSemiring
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
IsLocalRing.maximalIdeal
Localization
OreLocalization.instCommSemiring
isLocalRing
β€”isLocalRing
RingHom.instRingHomClass
IsLocalization.map_comap
Localization.isLocalization
comap_maximalIdeal

(root)

Definitions

NameCategoryTheorems
equivQuotMaximalIdealOfIsLocalization πŸ“–CompOpβ€”

---

← Back to Index