Documentation Verification Report

Extension

πŸ“ Source: Mathlib/RingTheory/Localization/AtPrime/Extension.lean

Statistics

MetricCount
DefinitionsprimesOverEquivPrimesOver, equivQuotientMapOfIsMaximal
2
TheoremsprimesOverEquivPrimesOver_apply, primesOverEquivPrimesOver_inertiagDeg_eq, primesOverEquivPrimesOver_ramificationIdx_eq, primesOverEquivPrimesOver_symm_apply, algebraMap_equivQuotMaximalIdeal_symm_apply, equivQuotientMapMaximalIdeal_apply_mk, equivQuotientMapOfIsMaximal_apply_mk, equivQuotientMapOfIsMaximal_symm_apply_mk, exists_algebraMap_quot_eq_of_mem_quot, inertiaDeg_map_eq_inertiaDeg, liesOver_comap_of_liesOver, liesOver_map_of_liesOver, mem_primesOver_of_isPrime, ramificationIdx_map_eq_ramificationIdx
14
Total16

IsDedekindDomain

Definitions

NameCategoryTheorems
primesOverEquivPrimesOver πŸ“–CompOp
4 mathmath: primesOverEquivPrimesOver_inertiagDeg_eq, primesOverEquivPrimesOver_apply, primesOverEquivPrimesOver_ramificationIdx_eq, primesOverEquivPrimesOver_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
primesOverEquivPrimesOver_apply πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
Ideal.primesOver
IsLocalRing.maximalIdeal
DFunLike.coe
OrderIso
Set.Elem
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instFunLikeOrderIso
primesOverEquivPrimesOver
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
primesOverEquivPrimesOver_inertiagDeg_eq πŸ“–mathematicalβ€”Ideal.inertiaDeg
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
Set
Set.instMembership
Ideal.primesOver
DFunLike.coe
OrderIso
Set.Elem
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instFunLikeOrderIso
primesOverEquivPrimesOver
β€”Ring.DimensionLEOne.maximalOfPrime
IsDedekindDomainDvr.ring_dimensionLEOne
toIsDomain
isDedekindDomainDvr
Ideal.ne_bot_of_mem_primesOver
IsDomain.toNontrivial
Subtype.prop
Ideal.primesOver.isPrime
IsLocalization.AtPrime.liesOver_map_of_liesOver
Ideal.primesOver.liesOver
IsLocalization.AtPrime.inertiaDeg_map_eq_inertiaDeg
primesOverEquivPrimesOver_ramificationIdx_eq πŸ“–mathematicalβ€”Ideal.ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
IsLocalRing.maximalIdeal
Ideal
Set
Set.instMembership
Ideal.primesOver
DFunLike.coe
OrderIso
Set.Elem
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instFunLikeOrderIso
primesOverEquivPrimesOver
β€”IsLocalization.AtPrime.ramificationIdx_map_eq_ramificationIdx
Ideal.primesOver.liesOver
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
toIsDomain
Ideal.primesOver.isPrime
primesOverEquivPrimesOver_symm_apply πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
Ideal.primesOver
DFunLike.coe
OrderIso
Set.Elem
IsLocalRing.maximalIdeal
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
instFunLikeOrderIso
OrderIso.symm
primesOverEquivPrimesOver
Ideal.comap
RingHom
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”β€”

IsLocalization.AtPrime

Definitions

NameCategoryTheorems
equivQuotientMapOfIsMaximal πŸ“–CompOp
3 mathmath: equivQuotientMapOfIsMaximal_apply_mk, equivQuotientMapOfIsMaximal_symm_apply_mk, algebraMap_equivQuotMaximalIdeal_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_equivQuotMaximalIdeal_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Semiring.toNonAssocSemiring
Ideal.Quotient.commSemiring
Ideal.Quotient.semiring
RingHom.instFunLike
algebraMap
Ideal.Quotient.algebraOfLiesOver
RingEquiv
IsLocalRing.maximalIdeal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
equivQuotMaximalIdeal
Ideal.map
equivQuotientMapOfIsMaximal
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
IsLocalization.mk'_surjective
Ideal.IsMaximal.isPrime'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
Algebra.mem_algebraMapSubmonoid_of_mem
IsLocalization.algebraMap_mk'
equivQuotientMapMaximalIdeal_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
IsLocalRing.maximalIdeal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivQuotientMapMaximalIdeal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
β€”Ideal.instIsTwoSided_1
equivQuotientMapOfIsMaximal_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivQuotientMapOfIsMaximal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
β€”Ideal.instIsTwoSided_1
equivQuotientMapOfIsMaximal_symm_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
equivQuotientMapOfIsMaximal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
IsLocalization.mk'
Algebra.algebraMapSubmonoid
Ideal.primeCompl
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Ideal.Quotient.field
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”isPrime_map_of_liesOver
Ideal.IsMaximal.isPrime'
Ideal.instIsTwoSided_1
Iff.not
Ideal.Quotient.eq_zero_iff_mem
Set.disjoint_left
Ideal.disjoint_primeCompl_of_liesOver
Subtype.prop
RingEquiv.map_ne_zero_iff
RingEquiv.symm_apply_eq
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Ideal.Quotient.isDomain
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
mul_assoc
inv_mul_cancelβ‚€
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
mul_one
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsLocalization.mk'_spec
Ideal.Quotient.mk_algebraMap
exists_algebraMap_quot_eq_of_mem_quot πŸ“–mathematicalβ€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
IsLocalization.exists_mk'_eq
IsScalarTower.algebraMap_eq
Ideal.Quotient.isScalarTower
IsScalarTower.right
sub_eq_zero
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Ideal.Quotient.eq_zero_iff_mem
isPrime_map_of_liesOver
Ideal.IsMaximal.isPrime'
Set.disjoint_left
Ideal.disjoint_primeCompl_of_liesOver
Subtype.prop
Ideal.mem_comap
Ideal.comap_map_eq_self_of_isMaximal
Ideal.IsPrime.ne_top
Ideal.IsPrime.mem_or_mem
mul_sub
IsLocalization.mul_mk'_eq_mk'_of_mul
IsLocalization.mk'_mul_cancel_left
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Ideal.IsPrime.ne_top'
Ideal.Quotient.eq
mul_comm
inv_mul_cancel_rightβ‚€
Iff.not
inertiaDeg_map_eq_inertiaDeg πŸ“–mathematicalβ€”Ideal.inertiaDeg
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Ideal.inertiaDeg_algebraMap
IsLocalRing.maximalIdeal.isMaximal
Algebra.finrank_eq_of_equiv_equiv
Ideal.Quotient.ringHom_ext
Ideal.instIsTwoSided_1
RingHom.ext
algebraMap_equivQuotMaximalIdeal_symm_apply
liesOver_comap_of_liesOver πŸ“–mathematicalβ€”Ideal.LiesOver
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
RingHom.instRingHomClass
β€”liesOver_maximalIdeal
Ideal.LiesOver.trans
Ideal.comap_liesOver
AlgHom.algHomClass
liesOver_map_of_liesOver πŸ“–mathematicalβ€”Ideal.LiesOver
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
IsLocalRing.maximalIdeal
β€”Ideal.liesOver_iff
map_eq_maximalIdeal
Ideal.over_def
Ideal.under_map_eq_map_under
IsLocalRing.maximalIdeal.isMaximal
Ideal.IsPrime.ne_top
isPrime_map_of_liesOver
mem_primesOver_of_isPrime πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Set
Set.instMembership
Ideal.primesOver
IsLocalRing.maximalIdeal
β€”Ideal.IsMaximal.isPrime'
Ideal.liesOver_iff
IsLocalRing.eq_maximalIdeal
Ideal.IsMaximal.under
ramificationIdx_map_eq_ramificationIdx πŸ“–mathematicalβ€”Ideal.ramificationIdx
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
IsLocalRing.maximalIdeal
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”map_eq_maximalIdeal
Ideal.map_ne_bot_of_ne_bot
IsLocalRing.toNontrivial
isPrime_map_of_liesOver
Ideal.map_bot
RingHom.instRingHomClass
Ideal.ramificationIdx_bot'
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsDedekindDomain.toIsDomain
Ideal.map_le_iff_le_comap
le_of_eq
Ideal.liesOver_iff
liesOver_map_of_liesOver
Ideal.ramificationIdx_algebra_tower
Ideal.IsMaximal.isPrime'
IsLocalRing.maximalIdeal.isMaximal
le_rfl
one_mul
Ideal.ramificationIdx_map_self_eq_one
Ideal.IsPrime.ne_top'
mul_one

---

← Back to Index