Documentation Verification Report

FractionRing

πŸ“ Source: Mathlib/RingTheory/Localization/FractionRing.lean

Statistics

MetricCount
DefinitionsFractionRing, algEquiv, liftAlgebra, unique, IsFractionRing, algEquiv, algEquivOfAlgEquiv, fieldEquivOfAlgEquiv, fieldEquivOfAlgEquivHom, inv, liftAlgHom, map, ringEquivOfRingEquiv, toField
14
Theoremsof_field_isFractionRing, algebraMap_liftAlgebra, instFaithfulSMul, instIsFractionRing, instIsScalarTower, instIsScalarTower_1, instNontrivial, isScalarTower_liftAlgebra, mk_eq_div, algEquivOfAlgEquiv_algebraMap, algEquivOfAlgEquiv_symm, algEquiv_commutes, algHom_commutes, closure_range_algebraMap, coe_inj, coe_liftAlgHom, div_surjective, fieldEquivOfAlgEquivHom_apply, fieldEquivOfAlgEquivHom_injective, fieldEquivOfAlgEquiv_algebraMap, fieldEquivOfAlgEquiv_refl, fieldEquivOfAlgEquiv_trans, idem, injective, injective_comp_algebraMap, instFaithfulSMul, inv_def, isDomain, isFractionRing_iff_of_base_ringEquiv, isUnit_map_of_injective, liftAlgHom_apply, liftAlgHom_toRingHom, lift_algebraMap, lift_fieldRange, lift_fieldRange_eq_of_range_eq, lift_mk', lift_unique, mk'_eq_div, mk'_eq_one_iff_eq, mk'_eq_zero_iff_eq_zero, mk'_mk_eq_div, mul_inv_cancel, nonZeroDivisors_eq_isUnit, nontrivial, nontrivial_iff_nontrivial, of_field, restrictScalars_fieldEquivOfAlgEquiv, ringEquivOfRingEquiv_algebraMap, ringEquivOfRingEquiv_symm, ringHom_ext, ringHom_fieldRange_eq_of_comp_eq, ringHom_fieldRange_eq_of_comp_eq_of_range_eq, self_iff_bijective, self_iff_nonZeroDivisors_eq_isUnit, self_iff_nonZeroDivisors_le_isUnit, self_iff_surjective, surjective_iff_isField, to_map_eq_zero_iff, to_map_ne_zero_of_mem_nonZeroDivisors, trans, isFractionRing, isFractionRing, algebraMap_injective_of_field_isFractionRing, instIsFractionRing, instIsLocalizationIntPosRat
65
Total79

FaithfulSMul

Theorems

NameKindAssumesProvesValidatesDepends On
of_field_isFractionRing πŸ“–mathematicalβ€”FaithfulSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”faithfulSMul_iff_algebraMap_injective
algebraMap_injective_of_field_isFractionRing

FractionRing

Definitions

NameCategoryTheorems
algEquiv πŸ“–CompOp
1 mathmath: map_equiv_traceDual
liftAlgebra πŸ“–CompOp
23 mathmath: instIsScalarTower, instIsSeparableFractionRingLocalizationAlgebraMapSubmonoidPrimeCompl, algebraMap_liftAlgebra, instIsPushoutFractionRingPolynomial_1, coeSubmodule_differentIdeal_fractionRing, Algebra.algebraMap_intNorm_fractionRing, instIsScalarTower_1, instIsScalarTowerAtPrimeFractionRing, map_equiv_traceDual, Ideal.relNorm_algebraMap', Ideal.relNorm_algebraMap, IsGaloisGroup.toFractionRing, instIsSeparableFractionRingAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, Algebra.IsAlgebraic.rank_fractionRing, instIsPushoutFractionRingPolynomial, isScalarTower_liftAlgebra, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, Algebra.algebraMap_intTrace_fractionRing, Ideal.absNorm_algebraMap, instFiniteDimensionalFractionRingOfFinite, Algebra.IsAlgebraic.rank_fractionRing_polynomial, instIsPushoutFractionRingMvPolynomial_1, instIsPushoutFractionRingMvPolynomial
unique πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_liftAlgebra πŸ“–mathematicalβ€”algebraMap
FractionRing
OreLocalization.instCommSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
liftAlgebra
IsFractionRing.lift
field
IsDomain.of_faithfulSMul
instIsDomain
OreLocalization.instAlgebra
Algebra.id
Localization.isLocalization
FaithfulSMul.algebraMap_injective
β€”β€”
instFaithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
FractionRing
OreLocalization.instSMulOfIsScalarTower
CommMonoid.toMonoid
CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
OreLocalization.oreSetComm
Monoid.toMulAction
Algebra.toSMul
IsScalarTower.right
β€”IsScalarTower.right
faithfulSMul_iff_algebraMap_injective
IsScalarTower.algebraMap_eq
OreLocalization.instIsScalarTower
FaithfulSMul.algebraMap_injective
IsFractionRing.instFaithfulSMul
Localization.isLocalization
instIsFractionRing πŸ“–mathematicalβ€”IsFractionRing
FractionRing
OreLocalization.instCommSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
Algebra.id
β€”IsFractionRing.idem
Localization.isLocalization
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
FractionRing
OreLocalization.instSMulOfIsScalarTower
CommMonoid.toMonoid
CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
OreLocalization.oreSetComm
Monoid.toMulAction
Algebra.toSMul
OreLocalization.instCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
liftAlgebra
β€”IsScalarTower.to₁₃₄
IsScalarTower.right
OreLocalization.instIsScalarTower
isScalarTower_liftAlgebra
instIsScalarTower_1 πŸ“–mathematicalβ€”IsScalarTower
FractionRing
Algebra.toSMul
OreLocalization.instCommSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
liftAlgebra
Semifield.toCommSemiring
β€”Localization.ind
FaithfulSMul.to_isTorsionFree
IsDomain.toNontrivial
IsDomain.toIsCancelMulZero
instIsDomain
nonZeroDivisors.coe_ne_zero
IsScalarTower.right
instIsScalarTower
IsScalarTower.left
Localization.isLocalization
Localization.mk_eq_mk'
IsLocalization.mk'_mul_cancel_left
algebraMap_smul
smul_assoc
instNontrivial πŸ“–mathematicalβ€”Nontrivial
FractionRing
β€”OreLocalization.nontrivial
isScalarTower_liftAlgebra πŸ“–mathematicalβ€”IsScalarTower
FractionRing
OreLocalization.instSMulOfIsScalarTower
CommMonoid.toMonoid
CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
OreLocalization.oreSetComm
Monoid.toMulAction
Algebra.toSMul
Algebra.id
IsScalarTower.right
OreLocalization.instCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
liftAlgebra
β€”IsDomain.of_faithfulSMul
instIsDomain
IsScalarTower.of_algebraMap_eq
FaithfulSMul.algebraMap_injective
IsFractionRing.lift_algebraMap
mk_eq_div πŸ“–mathematicalβ€”CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
FractionRing
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
OreLocalization.instDivisionRingNonZeroDivisors
CommRing.toRing
IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
OreLocalization.oreSetComm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
OreLocalization.instSemiring
RingHom.instFunLike
algebraMap
OreLocalization.instAlgebra
Algebra.id
Submonoid
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.instMembership
Submonoid.instSetLike
β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
Localization.isLocalization
Localization.mk_eq_mk'
IsFractionRing.mk'_eq_div

IsFractionRing

Definitions

NameCategoryTheorems
algEquiv πŸ“–CompOpβ€”
algEquivOfAlgEquiv πŸ“–CompOp
3 mathmath: restrictScalars_fieldEquivOfAlgEquiv, algEquivOfAlgEquiv_algebraMap, algEquivOfAlgEquiv_symm
fieldEquivOfAlgEquiv πŸ“–CompOp
5 mathmath: fieldEquivOfAlgEquivHom_apply, fieldEquivOfAlgEquiv_trans, fieldEquivOfAlgEquiv_refl, fieldEquivOfAlgEquiv_algebraMap, restrictScalars_fieldEquivOfAlgEquiv
fieldEquivOfAlgEquivHom πŸ“–CompOp
2 mathmath: fieldEquivOfAlgEquivHom_apply, fieldEquivOfAlgEquivHom_injective
inv πŸ“–CompOp
2 mathmath: inv_def, mul_inv_cancel
liftAlgHom πŸ“–CompOp
6 mathmath: coe_liftAlgHom, liftAlgHom_fieldRange_eq_of_range_eq, AlgebraicIndependent.liftAlgHom_comp_reprField, liftAlgHom_toRingHom, liftAlgHom_fieldRange, liftAlgHom_apply
map πŸ“–CompOpβ€”
ringEquivOfRingEquiv πŸ“–CompOp
4 mathmath: ringEquivOfRingEquiv_algebraMap, WittVector.exists_frobenius_solution_fractionRing, ringEquivOfRingEquiv_symm, WittVector.exists_frobenius_solution_fractionRing_aux
toField πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivOfAlgEquiv_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgEquiv.instFunLike
algEquivOfAlgEquiv
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”IsLocalization.map_eq
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
algEquivOfAlgEquiv_symm πŸ“–mathematicalβ€”AlgEquiv.symm
CommSemiring.toSemiring
CommRing.toCommSemiring
algEquivOfAlgEquiv
β€”β€”
algEquiv_commutes πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
AlgEquiv
CommRing.toCommSemiring
AlgEquiv.instFunLike
β€”algHom_commutes
algHom_commutes πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
AlgHom
CommRing.toCommSemiring
AlgHom.funLike
β€”div_surjective
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instRingHomClass
AlgHom.commutes
IsScalarTower.algebraMap_apply
closure_range_algebraMap πŸ“–mathematicalβ€”Subfield.closure
Field.toDivisionRing
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Top.top
Subfield
Subfield.instTop
β€”top_unique
div_surjective
div_mem
SubfieldClass.toSubgroupClass
Subfield.instSubfieldClass
Subfield.subset_closure
coe_inj πŸ“–mathematicalβ€”Algebra.cast
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”instFaithfulSMul
coe_liftAlgHom πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AlgHom.funLike
liftAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
lift
AlgHom.toRingHom
β€”β€”
div_surjective πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”IsLocalization.exists_mk'_eq
mk'_eq_div
fieldEquivOfAlgEquivHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
fieldEquivOfAlgEquivHom
fieldEquivOfAlgEquiv
β€”β€”
fieldEquivOfAlgEquivHom_injective πŸ“–mathematicalβ€”AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
fieldEquivOfAlgEquivHom
β€”AlgEquiv.ext
fieldEquivOfAlgEquiv_algebraMap
instFaithfulSMul
AlgEquiv.ext_iff
fieldEquivOfAlgEquiv_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
fieldEquivOfAlgEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”ringEquivOfRingEquiv_algebraMap
fieldEquivOfAlgEquiv_refl πŸ“–mathematicalβ€”fieldEquivOfAlgEquiv
AlgEquiv.refl
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”AlgEquiv.ext
div_surjective
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
fieldEquivOfAlgEquiv_algebraMap
fieldEquivOfAlgEquiv_trans πŸ“–mathematicalβ€”fieldEquivOfAlgEquiv
AlgEquiv.trans
CommRing.toCommSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”AlgEquiv.ext
div_surjective
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
fieldEquivOfAlgEquiv_algebraMap
idem πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
Algebra.id
β€”IsLocalization.self
Eq.le
nonZeroDivisors_eq_isUnit
injective πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsLocalization.injective
le_of_eq
injective_comp_algebraMap πŸ“–mathematicalβ€”RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.comp
algebraMap
β€”ringHom_ext
RingHom.congr_fun
instFaithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”faithfulSMul_iff_algebraMap_injective
injective
inv_def πŸ“–mathematicalβ€”inv
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsLocalization.mk'
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
IsLocalization.sec
β€”β€”
isDomain πŸ“–mathematicalβ€”IsDomain
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsLocalization.isDomain_of_le_nonZeroDivisors
le_refl
isFractionRing_iff_of_base_ringEquiv πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
RingHom.toAlgebra
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
algebraMap
RingEquiv.toRingHom
RingEquiv.symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
MulEquivClass.toMonoidWithZeroHomClass
RingEquivClass.toMulEquivClass
MulEquivClass.map_nonZeroDivisors
IsLocalization.isLocalization_iff_of_base_ringEquiv
isUnit_map_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”map_ne_zero_of_mem_nonZeroDivisors
RingHom.domain_nontrivial
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
liftAlgHom_apply πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AlgHom.funLike
liftAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
lift
AlgHom.toRingHom
β€”β€”
liftAlgHom_toRingHom πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AlgHom.funLike
AlgHom.toRingHom
liftAlgHom
lift
β€”β€”
lift_algebraMap πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
lift
algebraMap
β€”IsLocalization.lift_eq
isUnit_map_of_injective
lift_fieldRange πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
RingHom.fieldRange
Field.toDivisionRing
lift
Subfield.closure
SetLike.coe
Subring
DivisionRing.toRing
Subring.instSetLike
RingHom.range
CommRing.toRing
β€”ringHom_fieldRange_eq_of_comp_eq
RingHom.ext
lift_algebraMap
lift_fieldRange_eq_of_range_eq πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
RingHom.range
CommRing.toRing
DivisionRing.toRing
Field.toDivisionRing
Subring.closure
RingHom.fieldRange
lift
Subfield.closure
β€”ringHom_fieldRange_eq_of_comp_eq_of_range_eq
RingHom.ext
lift_algebraMap
lift_mk' πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
lift
IsLocalization.mk'
nonZeroDivisors
Semiring.toMonoidWithZero
Semifield.toCommSemiring
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”mk'_eq_div
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
lift_algebraMap
lift_unique πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
liftβ€”IsLocalization.lift_unique
isUnit_map_of_injective
mk'_eq_div πŸ“–mathematicalβ€”IsLocalization.mk'
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”mk'_mk_eq_div
mk'_eq_one_iff_eq πŸ“–mathematicalβ€”IsLocalization.mk'
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
β€”to_map_ne_zero_of_mem_nonZeroDivisors
RingHom.domain_nontrivial
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
injective
div_eq_one_iff_eq
mk'_eq_div
IsLocalization.mk'_self'
mk'_eq_zero_iff_eq_zero πŸ“–mathematicalβ€”IsLocalization.mk'
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”mk'_eq_div
instFaithfulSMul
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
IsDomain.to_noZeroDivisors
instIsDomain
RingHom.domain_nontrivial
mk'_mk_eq_div πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsLocalization.mk'
Semifield.toCommSemiring
Field.toSemifield
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
β€”IsLocalization.mk'_eq_iff_eq_mul
div_mul_cancelβ‚€
to_map_ne_zero_of_mem_nonZeroDivisors
RingHom.domain_nontrivial
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
mul_inv_cancel πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
inv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”inv_def
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
IsLocalization.eq_zero_of_fst_eq_zero
IsLocalization.sec_spec
IsLocalization.map_units
one_mul
mul_assoc
IsLocalization.mk'_spec
IsLocalization.eq_mk'_iff_mul_eq
IsLocalization.mk'_sec
nonZeroDivisors_eq_isUnit πŸ“–mathematicalβ€”nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
IsUnit.submonoid
MonoidWithZero.toMonoid
β€”le_antisymm
IsLocalization.surj
mem_nonZeroDivisors_of_injective
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
injective
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
IsUnit.mem_nonZeroDivisors
IsLocalization.map_units
isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid
isUnit_le_nonZeroDivisors
nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”nontrivial_iff_nontrivial
nontrivial_iff_nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”IsLocalization.exists_of_eq
mul_one
MulZeroClass.mul_zero
IsUnit.ne_zero
IsLocalization.map_units
Subsingleton.eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
of_field πŸ“–mathematicalDivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
IsFractionRing
Semifield.toCommSemiring
β€”FaithfulSMul.algebraMap_injective
Function.Injective.noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsDomain.to_noZeroDivisors
instIsDomain
Module.nontrivial
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
map_ne_zero_iff
mem_nonZeroDivisors_iff_ne_zero
eq_or_ne
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
mul_one
div_zero
eq_div_iff_mul_eq
one_mul
restrictScalars_fieldEquivOfAlgEquiv πŸ“–mathematicalβ€”AlgEquiv.restrictScalars
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
fieldEquivOfAlgEquiv
algEquivOfAlgEquiv
Field.toCommRing
β€”AlgEquiv.ext
ringEquivOfRingEquiv_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ringEquivOfRingEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”IsLocalization.map_eq
ringEquivOfRingEquiv_symm πŸ“–mathematicalβ€”RingEquiv.symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
ringEquivOfRingEquiv
β€”β€”
ringHom_ext πŸ“–β€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
β€”β€”RingHom.ext
div_surjective
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
ringHom_fieldRange_eq_of_comp_eq πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
algebraMap
RingHom.fieldRange
Field.toDivisionRing
Subfield.closure
SetLike.coe
Subring
DivisionRing.toRing
Subring.instSetLike
RingHom.range
CommRing.toRing
β€”RingHom.fieldRange_eq_map
closure_range_algebraMap
RingHom.map_field_closure
Set.range_comp
RingHom.coe_comp
RingHom.coe_range
ringHom_fieldRange_eq_of_comp_eq_of_range_eq πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
algebraMap
RingHom.range
CommRing.toRing
DivisionRing.toRing
Field.toDivisionRing
Subring.closure
RingHom.fieldRange
Subfield.closure
β€”ringHom_fieldRange_eq_of_comp_eq
Subfield.ext
Subring.closure_eq
self_iff_bijective πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
Algebra.id
Function.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”AlgEquiv.bijective
self_iff_nonZeroDivisors_le_isUnit
IsLocalization.isLocalization_of_algEquiv
self_iff_nonZeroDivisors_eq_isUnit πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
Algebra.id
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
IsUnit.submonoid
MonoidWithZero.toMonoid
β€”nonZeroDivisors_eq_isUnit
IsLocalization.self
Eq.le
self_iff_nonZeroDivisors_le_isUnit πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
Algebra.id
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
IsUnit.submonoid
MonoidWithZero.toMonoid
β€”self_iff_nonZeroDivisors_eq_isUnit
le_antisymm_iff
isUnit_le_nonZeroDivisors
self_iff_surjective πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
Algebra.id
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”self_iff_bijective
Function.Bijective.eq_1
injective
surjective_iff_isField πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsField
β€”MulEquiv.isField
Field.toIsField
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
injective
AlgEquiv.surjective
Ne.isUnit
mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
to_map_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsLocalization.to_map_eq_zero_iff
le_rfl
to_map_ne_zero_of_mem_nonZeroDivisors πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”β€”IsLocalization.to_map_ne_zero_of_mem_nonZeroDivisors
le_rfl
trans πŸ“–mathematicalβ€”IsFractionRing
CommRing.toCommSemiring
β€”IsLocalization.isLocalization_of_algEquiv
IsScalarTower.right

NNRat

Theorems

NameKindAssumesProvesValidatesDepends On
isFractionRing πŸ“–mathematicalβ€”IsFractionRing
Nat.instCommSemiring
NNRat
instCommSemiringNNRat
Semiring.toNatAlgebra
CommSemiring.toSemiring
β€”eq_natCast
RingHom.instRingHomClass
instCharZero
Nat.instNontrivial
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
mul_den_eq_num
one_mul

Rat

Theorems

NameKindAssumesProvesValidatesDepends On
isFractionRing πŸ“–mathematicalβ€”IsFractionRing
Int.instCommSemiring
commSemiring
Ring.toIntAlgebra
DivisionRing.toRing
instDivisionRing
β€”eq_intCast
RingHom.instRingHomClass
instCharZero
mem_nonZeroDivisors_iff_ne_zero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.instNontrivial
mul_den_eq_num

(root)

Definitions

NameCategoryTheorems
FractionRing πŸ“–CompOp
110 mathmath: RatFunc.mk_def_of_ne, RatFunc.ofFractionRing_mk', RatFunc.mk_coe_def, RatFunc.toFractionRing_injective, ClassGroup.mk0_integralRep, FractionalIdeal.isPrincipal_of_isPrincipal_num, FractionRing.instIsScalarTower, ClassGroup.Quot_mk_eq_mk, IsDedekindRing.toIsIntegralClosure, RatFunc.smul_def, WittVector.IsocrystalHom.frob_equivariant, instIsScalarTowerLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, Cardinal.mk_fractionRing, instIsScalarTowerAtPrimeFractionRing_1, instIsFractionRingAtPrimeFractionRing, instIsSeparableFractionRingLocalizationAlgebraMapSubmonoidPrimeCompl, instIsScalarTowerAtPrimeLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, FractionalIdeal.isUnit_num, FractionRing.algebraMap_liftAlgebra, FractionRing.isSeparable_of_isLocalization, instIsPushoutFractionRingPolynomial_1, coeSubmodule_differentIdeal_fractionRing, RatFunc.mk_def, RatFunc.mk_eq_div', RatFunc.ofFractionRing_div, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Algebra.algebraMap_intNorm_fractionRing, RatFunc.toFractionRing_smul, FractionRing.instIsScalarTower_1, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, IsFractionRing.instAtPrimeFractionRing, RatFunc.ofFractionRing_one, FractionRing.cardinalMk, RatFunc.ofFractionRing_zero, AlgebraicIndependent.lift_reprField, RatFunc.ofFractionRing_add, WittVector.IsocrystalEquiv.frob_equivariant, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, instIsScalarTowerAtPrimeFractionRing, RatFunc.ofFractionRing_comp_algebraMap, map_equiv_traceDual, FractionRing.instIsFractionRing, Ideal.relNorm_algebraMap', Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, RatFunc.liftRingHom_ofFractionRing_algebraMap, RatFunc.one_def, RatFunc.inv_def, Ideal.relNorm_algebraMap, WittVector.inv_pairβ‚‚, WittVector.exists_frobenius_solution_fractionRing, IsGaloisGroup.toFractionRing, RatFunc.ofFractionRing_smul, WittVector.inv_pair₁, RatFunc.zero_def, RatFunc.ofFractionRing_injective, RatFunc.ofFractionRing_sub, AlgebraicIndependent.liftAlgHom_comp_reprField, RatFunc.ofFractionRing_neg, ClassGroup.mk_eq_mk, ClassGroup.equivPic_symm_apply, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, WittVector.StandardOneDimIsocrystal.frobenius_apply, instFiniteFractionRingLocalizationAlgebraMapSubmonoidNonZeroDivisors, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, IsLocalization.instIsScalarTowerAtPrimeFractionRing, instIsSeparableFractionRingAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, RatFunc.mk_def_of_mem, AlgebraicIndependent.aevalEquivField_apply_coe, IsFractionRing.charP, Algebra.IsAlgebraic.rank_fractionRing, instIsPushoutFractionRingPolynomial, RatFunc.ofFractionRing_inv, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, RatFunc.neg_def, RatFunc.ofFractionRing_eq, RatFunc.mk_zero, WittVector.exists_frobenius_solution_fractionRing_aux, RatFunc.mk_one', FractionRing.isScalarTower_liftAlgebra, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, Algebra.IsAlgebraic.rank_fractionRing_mvPolynomial, RatFunc.sub_def, RatFunc.div_def, RatFunc.add_def, Algebra.algebraMap_intTrace_fractionRing, RatFunc.toFractionRingRingEquiv_symm_eq, MvRatFunc.rank_eq_max_lift, ClassGroup.equivPic_apply, RatFunc.toFractionRingRingEquiv_apply, Ideal.absNorm_algebraMap, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, instIsFractionRingLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, FractionRing.instFaithfulSMul, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, RatFunc.mul_def, Ring.instIsGaloisFractionRingNormalClosure, ClassGroup.integralRep_mem_nonZeroDivisors, instFiniteDimensionalFractionRingOfFinite, RatFunc.toFractionRingAlgEquiv_apply, FractionRing.instNontrivial, Algebra.IsAlgebraic.rank_fractionRing_polynomial, ClassGroup.mk_def, FractionRing.mk_eq_div, instIsPushoutFractionRingMvPolynomial_1, RatFunc.ofFractionRing_algebraMap, IsFractionRing.charZero, instIsPushoutFractionRingMvPolynomial, RatFunc.ofFractionRing_mul, RatFunc.toFractionRing_eq
IsFractionRing πŸ“–MathDef
44 mathmath: AlgebraicGeometry.functionField_isFractionRing_of_isAffineOpen, IsIntegralClosure.isFractionRing_of_finite_extension, Localization.isFractionRing_range_mapToFractionRing, AlgebraicGeometry.ValuativeCommSq.isFractionRing, instIsFractionRing, NumberField.RingOfIntegers.instIsFractionRing, AlgebraicGeometry.functionField_isFractionRing_of_affine, instIsFractionRingAtPrimeFractionRing, CyclotomicRing.instIsFractionRingCyclotomicFieldOfIsDomainOfNeZeroCast, IsFractionRing.self_iff_surjective, IsFractionRing.isFractionRing_of_isLocalization, RatFunc.instIsFractionRingPolynomial, IsFractionRing.instAtPrimeFractionRing, integralClosure.isFractionRing_of_finite_extension, IsFractionRing.isFractionRing_iff_of_base_ringEquiv, NNRat.isFractionRing, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, IsFractionRing.idem, Valuation.Integers.isFractionRing, IsFractionRing.of_field, ValuationRing.isFractionRing_iff, FractionRing.instIsFractionRing, PadicInt.isFractionRing, AlgebraicGeometry.instIsFractionRingCarrierStalkCommRingCatPresheafFunctionField, ValuationSubring.instIsFractionRingSubtypeMem, Rat.isFractionRing, integralClosure.isFractionRing_of_algebraic, IsFractionRing.isFractionRing_of_isDomain_of_isLocalization, WithVal.instIsFractionRing, Localization.subalgebra.isFractionRing, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, IsIntegralClosure.isFractionRing_of_algebraic, Localization.subalgebra.isFractionRing_ofField, FunctionField.ringOfIntegers.instIsFractionRingSubtypeMemSubalgebraPolynomial, IsFractionRing.trans, IsFractionRing.self_iff_nonZeroDivisors_le_isUnit, LaurentSeries.instIsFractionRingPowerSeries, instIsFractionRingLocalizationAlgebraMapSubmonoidPrimeComplFractionRing, IsFractionRing.self_iff_nonZeroDivisors_eq_isUnit, isFractionRing_of_exists_eq_algebraMap_or_inv_eq_algebraMap_of_injective, ValuationRing.instIsFractionRingInteger, instIsFractionRingQuotientIdealResidueField, IsFractionRing.self_iff_bijective, Localization.subalgebra.instIsFractionRingSubtypeMemSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_injective_of_field_isFractionRing πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”Function.Injective.of_comp
RingHom.coe_comp
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsFractionRing.injective
instIsFractionRing πŸ“–mathematicalβ€”IsFractionRing
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
β€”IsLocalization.at_units
isUnit_of_mem_nonZeroDivisors
instIsLocalizationIntPosRat πŸ“–mathematicalβ€”IsLocalization
Int.instCommSemiring
Submonoid.pos
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Int.instSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Int.instZeroLEOneClass
Rat.commSemiring
Ring.toIntAlgebra
DivisionRing.toRing
Rat.instDivisionRing
β€”IsStrictOrderedRing.toPosMulStrictMono
Int.instIsStrictOrderedRing
Int.instZeroLEOneClass
eq_intCast
RingHom.instRingHomClass
Rat.instCharZero
LT.lt.ne'
Subtype.prop
IsLocalization.surj
Rat.isFractionRing
lt_or_gt_of_ne
Int.instNontrivial
Int.cast_neg
mul_neg
one_mul

---

← Back to Index