Documentation Verification Report

Integral

๐Ÿ“ Source: Mathlib/RingTheory/Localization/Integral.lean

Statistics

MetricCount
DefinitionscoeffIntegerNormalization, integerNormalization
2
Theoremscomap_isAlgebraic_iff, ideal_span_singleton_map_subset, integerNormalization_eq_zero_iff, isAlgebraic_iff, isAlgebraic_iff', exists_multiple_integral_of_isLocalization, isFractionRing_of_algebraic, isFractionRing_of_finite_extension, exists_isIntegral_mul_of_isIntegral_algebraMap, exists_isIntegral_mul_of_isIntegral_mk', integralClosure, isIntegral_of_isIntegral_map, coeffIntegerNormalization_mem_support, coeffIntegerNormalization_of_coeff_zero, exists_isIntegral_smul_of_isIntegral_map, integerNormalization_aeval_eq_zero, integerNormalization_coeff, integerNormalization_evalโ‚‚_eq_zero, integerNormalization_map_to_map, integerNormalization_spec, integralClosure, scaleRoots_commonDenom_mem_lifts, isIntegralElem_localization_at_leadingCoeff, isFractionRing_of_algebraic, isFractionRing_of_finite_extension, isAlgebraic_of_isFractionRing, isIntegral_localization, isIntegral_localization', isIntegral_of_isIntegral_adjoin_of_mul_eq_one, is_integral_localization_at_leadingCoeff
30
Total32

IsFractionRing

Theorems

NameKindAssumesProvesValidatesDepends On
comap_isAlgebraic_iff ๐Ÿ“–mathematicalโ€”Algebra.IsAlgebraic
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
โ€”isAlgebraic_iff
Algebra.IsAlgebraic.isAlgebraic
ideal_span_singleton_map_subset ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Set
Set.instHasSubset
SetLike.coe
Ideal
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Ideal.span
Set.instSingletonSet
Submodule
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Submodule.span
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semifield.toCommSemiring
Set.image
โ€”Ideal.mem_span_singleton
IsLocalization.exists_mk'_eq
Algebra.IsAlgebraic.exists_smul_eq_mul
IsDomain.to_noZeroDivisors
nonZeroDivisors.coe_ne_zero
IsDomain.toNontrivial
Function.Injective.of_comp
RingHom.coe_comp
IsScalarTower.algebraMap_eq
map_mem_nonZeroDivisors
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mem_nonZeroDivisors_of_ne_zero
IsLocalization.mk'_eq_of_eq
mul_comm
Algebra.smul_def
Submodule.span_subset_span
RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul'
Submodule.span_algebraMap_image_of_tower
Submodule.mem_map_of_mem
mk'_eq_div
IsScalarTower.algebraMap_apply
div_eq_mul_inv
mul_assoc
map_invโ‚€
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Submodule.smul_mem
integerNormalization_eq_zero_iff ๐Ÿ“–mathematicalโ€”IsLocalization.integerNormalization
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
Polynomial.instZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
โ€”Polynomial.ext_iff
IsLocalization.integerNormalization_spec
Polynomial.coeff_zero
to_map_eq_zero_iff
smul_zero
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
Algebra.smul_def
mem_nonZeroDivisors_iff_ne_zero
IsDomain.toNontrivial
isAlgebraic_iff ๐Ÿ“–mathematicalโ€”IsAlgebraic
CommRing.toRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
โ€”Polynomial.ext
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
Polynomial.coeff_map
to_map_eq_zero_iff
Polynomial.aeval_map_algebraMap
integerNormalization_eq_zero_iff
IsLocalization.integerNormalization_aeval_eq_zero
isAlgebraic_iff' ๐Ÿ“–mathematicalโ€”Algebra.IsAlgebraic
CommRing.toRing
DivisionRing.toRing
Field.toDivisionRing
โ€”IsScalarTower.right
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
EuclideanDomain.toNontrivial
FractionRing.isScalarTower_liftAlgebra
isAlgebraic_iff
Localization.isLocalization
isAlgebraic_iff_isIntegral
div_surjective
div_eq_mul_inv
IsIntegral.mul
IsAlgebraic.extendScalars
FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
IsAlgebraic.algebraMap
IsIntegral.inv
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
instFaithfulSMul
Polynomial.aeval_algebraMap_apply

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
exists_multiple_integral_of_isLocalization ๐Ÿ“–mathematicalIsIntegral
CommRing.toRing
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
Submonoid.smul
Algebra.toSMul
โ€”subsingleton_or_nontrivial
Polynomial.monic_X
RingHom.codomain_trivial
Polynomial.lifts_and_natDegree_eq_and_monic
IsLocalization.scaleRoots_commonDenom_mem_lifts
Polynomial.Monic.leadingCoeff
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
Polynomial.monic_scaleRoots_iff
IsScalarTower.algebraMap_eq
Polynomial.evalโ‚‚_map
Submonoid.smul_def
Algebra.smul_def
IsScalarTower.algebraMap_apply
Polynomial.scaleRoots_evalโ‚‚_eq_zero

IsIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isFractionRing_of_algebraic ๐Ÿ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsFractionRing
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
โ€”mem_nonZeroDivisors_iff_ne_zero
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
algebraMap_injective
IsAlgebraic.exists_integral_multiple
Algebra.IsAlgebraic.isAlgebraic
mem_nonZeroDivisors_of_ne_zero
IsScalarTower.algebraMap_apply
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
algebraMap_mk'
Algebra.smul_def
mul_comm
one_mul
isFractionRing_of_finite_extension ๐Ÿ“–mathematicalโ€”IsFractionRing
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
โ€”IsFractionRing.comap_isAlgebraic_iff
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toNontrivial
isFractionRing_of_algebraic
IsFractionRing.to_map_eq_zero_iff
map_eq_zero
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsScalarTower.algebraMap_apply

IsLocalization

Definitions

NameCategoryTheorems
coeffIntegerNormalization ๐Ÿ“–CompOp
2 mathmath: coeffIntegerNormalization_of_coeff_zero, integerNormalization_coeff
integerNormalization ๐Ÿ“–CompOp
6 mathmath: integerNormalization_map_to_map, IsFractionRing.integerNormalization_eq_zero_iff, integerNormalization_coeff, integerNormalization_aeval_eq_zero, integerNormalization_evalโ‚‚_eq_zero, integerNormalization_spec

Theorems

NameKindAssumesProvesValidatesDepends On
coeffIntegerNormalization_mem_support ๐Ÿ“–mathematicalโ€”Finset
Finset.instMembership
Polynomial.support
CommSemiring.toSemiring
CommRing.toCommSemiring
โ€”Mathlib.Tactic.Contrapose.contraposeโ‚‚
coeffIntegerNormalization.eq_1
coeffIntegerNormalization_of_coeff_zero ๐Ÿ“–mathematicalPolynomial.coeff
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
coeffIntegerNormalizationโ€”โ€”
exists_isIntegral_smul_of_isIntegral_map ๐Ÿ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
Algebra.toSMul
โ€”IsScalarTower.algebraMap_eq
map_eq_zero_iff
Algebra.smul_def
Polynomial.leadingCoeff_mul_monic
Polynomial.leadingCoeff_C
RingHom.isIntegralElem_leadingCoeff_mul
Polynomial.evalโ‚‚_mul
Polynomial.evalโ‚‚_C
integerNormalization_aeval_eq_zero ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
integerNormalizationโ€”Polynomial.aeval_def
IsScalarTower.algebraMap_eq
integerNormalization_evalโ‚‚_eq_zero
integerNormalization_coeff ๐Ÿ“–mathematicalโ€”Polynomial.coeff
CommSemiring.toSemiring
CommRing.toCommSemiring
integerNormalization
coeffIntegerNormalization
โ€”Polynomial.finset_sum_coeff
Finset.sum_congr
Polynomial.coeff_monomial
coeffIntegerNormalization.congr_simp
Finset.sum_ite_eq'
coeffIntegerNormalization_of_coeff_zero
integerNormalization_evalโ‚‚_eq_zero ๐Ÿ“–mathematicalPolynomial.evalโ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom.comp
Semiring.toNonAssocSemiring
algebraMap
integerNormalization
โ€”integerNormalization_map_to_map
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
Polynomial.evalโ‚‚_map
IsScalarTower.algebraMap_smul
Polynomial.isScalarTower
IsScalarTower.right
Polynomial.evalโ‚‚_smul
MulZeroClass.mul_zero
integerNormalization_map_to_map ๐Ÿ“–mathematicalโ€”Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
integerNormalization
Polynomial
Algebra.toSMul
Polynomial.semiring
Polynomial.algebraOfAlgebra
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
โ€”integerNormalization_spec
Polynomial.ext
Polynomial.coeff_map
Polynomial.coeff_smul
integerNormalization_spec ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Polynomial.coeff
integerNormalization
Algebra.toSMul
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
โ€”exist_integer_multiples_of_finset
integerNormalization_coeff
coeffIntegerNormalization.eq_1
Finset.mem_image
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.notMem_support_iff
smul_zero
integralClosure ๐Ÿ“–mathematicalโ€”IsLocalization
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommSemiring
Algebra.algebraMapSubmonoid
Subalgebra.toSemiring
Subalgebra.algebra
โ€”Subalgebra.instIsScalarTowerSubtypeMem
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_units
surj
IsIntegral.exists_multiple_integral_of_isLocalization
exists_isIntegral_smul_of_isIntegral_map
Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsIntegral.mul
IsIntegral.algebraMap
IsScalarTower.left
Algebra.IsIntegral.isIntegral
Algebra.IsIntegral.of_finite
Module.Finite.self
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
Submonoid.instSubmonoidClass
FaithfulSMul.algebraMap_injective
Subalgebra.instFaithfulSMulSubtypeMem
instFaithfulSMul
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
eq_iff_exists
scaleRoots_commonDenom_mem_lifts ๐Ÿ“–mathematicalSubring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
CommRing.toCommSemiring
CommSemiring.toSemiring
Polynomial.leadingCoeff
Polynomial
Subsemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
Subsemiring.instSetLike
Polynomial.lifts
Polynomial.scaleRoots
DFunLike.coe
RingHom
RingHom.instFunLike
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
commonDenom
Polynomial.support
Polynomial.coeff
โ€”Polynomial.lifts_iff_coeff_lifts
Polynomial.coeff_scaleRoots
Polynomial.coeff_natDegree
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
mul_one
lt_of_le_of_ne
Polynomial.le_natDegree_of_mem_supp
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_tsub_of_add_le_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
pow_add
pow_one
mul_comm
mul_assoc
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
RingHom.mem_range_self
Algebra.smul_def
map_integerMultiple
Polynomial.notMem_support_iff
MulZeroClass.zero_mul
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass

IsLocalization.Away

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isIntegral_mul_of_isIntegral_algebraMap ๐Ÿ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
โ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Module.IsNoetherian.finite
isNoetherian_of_finite
Finite.of_subsingleton
IsScalarTower.algebraMap_eq
IsLocalization.map_eq_zero_iff
isIntegral_trans
IsScalarTower.subalgebra'
IsScalarTower.right
integralClosure.AlgebraIsIntegral
isIntegral_leadingCoeff_smul
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_C
Polynomial.aeval_map_algebraMap
Polynomial.Monic.leadingCoeff_C_mul
Polynomial.Monic.map
RingHom.instRingHomClass
exists_isIntegral_mul_of_isIntegral_mk' ๐Ÿ“–mathematicalIsIntegral
CommRing.toRing
IsLocalization.mk'
CommRing.toCommSemiring
Submonoid.powers
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
โ€”exists_isIntegral_mul_of_isIntegral_algebraMap
IsIntegral.mul
IsIntegral.algebraMap
IsIntegral.pow
integralClosure ๐Ÿ“–mathematicalโ€”IsLocalization.Away
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Subalgebra.toSemiring
RingHom.instFunLike
algebraMap
Subalgebra.algebra
โ€”Algebra.algebraMapSubmonoid_powers
IsLocalization.integralClosure
instAlgebraMapSubmonoidPowersOfCoeRingHomAlgebraMap
isIntegral_of_isIntegral_map ๐Ÿ“–โ€”IsIntegral
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
โ€”โ€”IsScalarTower.algebraMap_eq
IsLocalization.map_eq_zero_iff
Polynomial.Monic.mul
Polynomial.monic_X_pow
Polynomial.evalโ‚‚_mul
Polynomial.evalโ‚‚_X_pow

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegralElem_localization_at_leadingCoeff ๐Ÿ“–mathematicalPolynomial.evalโ‚‚
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
Polynomial.leadingCoeff
IsIntegralElem
CommRing.toRing
IsLocalization.map
CommRing.toCommSemiring
Submonoid.map
RingHom
instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
Submonoid.le_comap_map
DFunLike.coe
algebraMap
โ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
instRingHomClass
Submonoid.le_comap_map
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
Polynomial.leadingCoeff_zero
Polynomial.evalโ‚‚_zero
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
IsLocalization.map_units
Polynomial.monic_mul_C_of_leadingCoeff_mul_eq_one
Polynomial.leadingCoeff_map_of_leadingCoeff_ne_zero
zero_ne_one
NeZero.one
nontrivial_of_ne
MulZeroClass.zero_mul
Polynomial.evalโ‚‚_mul_eq_zero_of_left
Polynomial.evalโ‚‚_map
IsLocalization.map_comp
Polynomial.hom_evalโ‚‚
map_zero
MonoidWithZeroHomClass.toZeroHomClass

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic_of_isFractionRing ๐Ÿ“–mathematicalโ€”Algebra.IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
โ€”IsLocalization.exists_mk'_eq
IsIntegral.isAlgebraic
EuclideanDomain.toNontrivial
IsLocalization.mk'_eq_mul_mk'_one
RingHom.IsIntegralElem.mul
IsIntegral.tower_top
IsIntegral.map
IsScalarTower.left
AlgHom.algHomClass
Algebra.IsIntegral.isIntegral
isAlgebraic_iff_isIntegral
IsAlgebraic.invOf_iff
isIntegral_localization ๐Ÿ“–mathematicalโ€”RingHom.IsIntegral
CommRing.toRing
IsLocalization.map
CommRing.toCommSemiring
Algebra.algebraMapSubmonoid
CommSemiring.toSemiring
algebraMap
โ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Submonoid.le_comap_map
IsLocalization.surj
isUnit_iff_exists_inv'
instIsDedekindFiniteMonoid
IsLocalization.map_units
IsIntegral.of_mul_unit
IsLocalization.map_eq
localizationAlgebraMap_def
map_one
MonoidHomClass.toOneHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Algebra.IsIntegral.isIntegral
is_integral_localization_at_leadingCoeff
Submonoid.one_mem
isIntegral_localization' ๐Ÿ“–mathematicalRingHom.IsIntegral
CommRing.toRing
Localization
CommRing.toCommMonoid
Submonoid.map
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom
MulOneClass.toMulOne
MonoidHom.instFunLike
MonoidHom.instMonoidHomClass
MonoidHomClass.toMonoidHom
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
OreLocalization.instCommRing
OreLocalization.oreSetComm
OreLocalization.instRing
IsLocalization.map
OreLocalization.instCommSemiring
OreLocalization.instAlgebra
Algebra.id
Localization.isLocalization
Ring.toSemiring
Submonoid.le_comap_map
โ€”MonoidHom.instMonoidHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Localization.isLocalization
isIntegral_localization
isIntegral_of_isIntegral_adjoin_of_mul_eq_one ๐Ÿ“–โ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
IsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Polynomial.instCommRingAdjoinSingleton
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
โ€”โ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Module.IsNoetherian.finite
isNoetherian_of_finite
Finite.of_subsingleton
Polynomial.lifts_iff_coeff_lifts
Polynomial.coeff_map
Polynomial.lifts_and_degree_eq_and_monic
Polynomial.Monic.map
Polynomial.eval_map
Finset.le_sup
Nat.instCanonicallyOrderedAdd
Polynomial.aeval_def
mul_comm
Polynomial.evalโ‚‚_reflect_mul_pow
LE.le.trans
Polynomial.natDegree_reflect_le
sup_of_le_left
Polynomial.reflect_reflect
Polynomial.monic_of_natDegree_le_of_coeff_eq_one
Polynomial.natDegree_sum_le_of_forall_le
le_imp_le_of_le_of_le
Polynomial.natDegree_mul_le
le_refl
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Polynomial.natDegree_pow_le
mul_le_mul_right
Nat.instMulLeftMono
Polynomial.natDegree_X_le
add_le_add_right
mul_one
max_eq_left
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Polynomial.le_natDegree_of_mem_supp
Polynomial.finset_sum_coeff
Finset.sum_congr
Polynomial.coeff_X_pow_mul'
Polynomial.coeff_reflect
Finset.sum_eq_single
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
LE.le.lt_of_ne
add_comm
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instOrderedSub
LT.lt.not_ge
Polynomial.coeff_eq_zero_of_natDegree_lt
zero_add
tsub_zero
Polynomial.revAt_le
tsub_self
Polynomial.Monic.leadingCoeff
add_tsub_cancel_left
Polynomial.coeff_one_zero
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_X
mul_left_comm
MulZeroClass.zero_mul
is_integral_localization_at_leadingCoeff ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
Polynomial.leadingCoeff
RingHom.IsIntegralElem
CommRing.toRing
IsLocalization.map
Algebra.algebraMapSubmonoid
algebraMap
RingHom
RingHom.instFunLike
โ€”RingHom.isIntegralElem_localization_at_leadingCoeff

integralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isFractionRing_of_algebraic ๐Ÿ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsFractionRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
Subalgebra.toAlgebra
Algebra.id
โ€”IsIntegralClosure.isFractionRing_of_algebraic
instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right
isFractionRing_of_finite_extension ๐Ÿ“–mathematicalโ€”IsFractionRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
Subalgebra.toAlgebra
Algebra.id
โ€”IsIntegralClosure.isFractionRing_of_finite_extension
instIsDomainSubtypeMemSubalgebraIntegralClosure
instIsDomain
isIntegralClosure
IsScalarTower.subalgebra'
IsScalarTower.right

---

โ† Back to Index