📁 Source: Mathlib/RingTheory/Localization/Rat.lean
associated_num_den
isFractionRingDen
isFractionRingNum
isLocalizationIsInteger_iff
Associated
Int.instMonoid
IsFractionRing.num
Int.instCommRing
Int.instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
EuclideanDomain.to_principal_ideal_domain
Int.euclideanDomain
instField
Ring.toIntAlgebra
DivisionRing.toRing
instDivisionRing
isFractionRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsFractionRing.den
IsFractionRing.num_den_unique
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Int.instNontrivial
IsBezout.span_pair_isPrincipal
IsBezout.of_isPrincipalIdealRing
IsFractionRing.mk'_eq_div
eq_intCast
RingHom.instRingHomClass
map_natCast
num_div_den
IsLocalization.IsInteger
Int.instCommSemiring
commSemiring
Set
Set.instMembership
Set.range
---
← Back to Index