Documentation Verification Report

Multiplicity

πŸ“ Source: Mathlib/RingTheory/Multiplicity.lean

Statistics

MetricCount
DefinitionsFiniteMultiplicity, decidableMultiplicityFinite, decidableFiniteMultiplicity, emultiplicity, multiplicity
5
Theoremsmultiplicity_pos, def, emultiplicity_eq_iff_multiplicity_eq, emultiplicity_eq_multiplicity, emultiplicity_le_of_multiplicity_le, emultiplicity_lt_of_multiplicity_lt, emultiplicity_self, exists_eq_pow_mul_and_not_dvd, le_multiplicity_of_le_emultiplicity, le_multiplicity_of_pow_dvd, lt_multiplicity_of_lt_emultiplicity, mul_iff, mul_left, mul_right, multiplicity_add_of_gt, multiplicity_eq_iff, multiplicity_le_multiplicity_iff, multiplicity_lt_iff_not_dvd, multiplicity_pow, ne_zero, neg, neg_iff, not_dvd_of_one_right, not_iff_forall, not_of_isUnit_left, not_of_one_left, not_of_unit_left, not_pow_dvd_of_multiplicity_lt, not_unit, one_right, or_of_add, pow, pow_dvd_iff_le_multiplicity, emultiplicity_prod, emultiplicity_natAbs, finiteMultiplicity_iff, finiteMultiplicity_iff_finiteMultiplicity_natAbs, multiplicity_natAbs, natCast_emultiplicity, natCast_multiplicity, finiteMultiplicity_iff, finiteMultiplicity_mul, dvd_iff_emultiplicity_pos, dvd_iff_multiplicity_pos, dvd_of_emultiplicity_pos, dvd_of_multiplicity_pos, emultiplicity_add_eq_min, emultiplicity_add_of_gt, emultiplicity_eq_coe, emultiplicity_eq_emultiplicity_iff, emultiplicity_eq_iff_multiplicity_eq_of_ne_one, emultiplicity_eq_ofNat, emultiplicity_eq_of_associated_left, emultiplicity_eq_of_associated_right, emultiplicity_eq_of_dvd_of_not_dvd, emultiplicity_eq_top, emultiplicity_eq_zero, emultiplicity_eq_zero_iff_multiplicity_eq_zero, emultiplicity_le_emultiplicity_iff, emultiplicity_le_emultiplicity_of_dvd_left, emultiplicity_le_emultiplicity_of_dvd_right, emultiplicity_lt_iff_not_dvd, emultiplicity_lt_top, emultiplicity_map_eq, emultiplicity_mk_eq_emultiplicity, emultiplicity_mul, emultiplicity_ne_of_multiplicity_ne, emultiplicity_ne_zero, emultiplicity_neg, emultiplicity_of_isUnit_right, emultiplicity_of_one_right, emultiplicity_of_unit_right, emultiplicity_one_left, emultiplicity_pos_iff, emultiplicity_pos_of_dvd, emultiplicity_pow, emultiplicity_pow_self, emultiplicity_pow_self_of_prime, emultiplicity_sub_of_gt, emultiplicity_zero, emultiplicity_zero_eq_zero_of_ne_zero, finiteMultiplicity_iff_emultiplicity_ne_top, finiteMultiplicity_mul_aux, finiteMultiplicity_of_emultiplicity_eq_natCast, le_emultiplicity_map, le_emultiplicity_of_le_multiplicity, le_emultiplicity_of_pow_dvd, lt_emultiplicity_of_lt_multiplicity, min_le_emultiplicity_add, multiplicity_add_eq_min, multiplicity_eq_of_associated_left, multiplicity_eq_of_associated_right, multiplicity_eq_of_dvd_of_not_dvd, multiplicity_eq_of_emultiplicity_eq, multiplicity_eq_of_emultiplicity_eq_some, multiplicity_eq_one_of_not_finiteMultiplicity, multiplicity_eq_zero, multiplicity_eq_zero_of_coprime, multiplicity_le_emultiplicity, multiplicity_le_of_emultiplicity_le, multiplicity_lt_of_emultiplicity_lt, multiplicity_map_eq, multiplicity_mul, multiplicity_ne_zero, multiplicity_neg, multiplicity_of_isUnit_right, multiplicity_of_one_right, multiplicity_of_unit_right, multiplicity_pos_of_dvd, multiplicity_pow_self, multiplicity_pow_self_of_prime, multiplicity_self, multiplicity_sub_of_gt, multiplicity_zero_eq_zero_of_ne_zero, not_pow_dvd_of_emultiplicity_lt, pow_dvd_iff_le_emultiplicity, pow_dvd_of_le_emultiplicity, pow_dvd_of_le_multiplicity, pow_multiplicity_dvd
119
Total124

Dvd

Theorems

NameKindAssumesProvesValidatesDepends On
multiplicity_pos πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
multiplicityβ€”dvd_iff_multiplicity_pos

FiniteMultiplicity

Theorems

NameKindAssumesProvesValidatesDepends On
def πŸ“–mathematicalβ€”FiniteMultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”β€”
emultiplicity_eq_iff_multiplicity_eq πŸ“–mathematicalFiniteMultiplicityemultiplicity
ENat
ENat.instNatCast
multiplicity
β€”emultiplicity_eq_multiplicity
emultiplicity_eq_multiplicity πŸ“–mathematicalFiniteMultiplicityemultiplicity
ENat
ENat.instNatCast
multiplicity
β€”multiplicity_eq_of_emultiplicity_eq_some
emultiplicity_le_of_multiplicity_le πŸ“–mathematicalFiniteMultiplicity
multiplicity
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
β€”emultiplicity_eq_multiplicity
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
emultiplicity_lt_of_multiplicity_lt πŸ“–mathematicalFiniteMultiplicity
multiplicity
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
β€”emultiplicity_eq_multiplicity
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
emultiplicity_self πŸ“–mathematicalFiniteMultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
emultiplicity
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”emultiplicity_eq_multiplicity
multiplicity_self
Nat.cast_one
exists_eq_pow_mul_and_not_dvd πŸ“–mathematicalFiniteMultiplicityMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
multiplicity
semigroupDvd
Monoid.toSemigroup
β€”pow_multiplicity_dvd
pow_succ
mul_assoc
multiplicity_eq_iff
le_multiplicity_of_le_emultiplicity πŸ“–mathematicalFiniteMultiplicity
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
multiplicityβ€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
emultiplicity_eq_multiplicity
le_multiplicity_of_pow_dvd πŸ“–mathematicalFiniteMultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
multiplicityβ€”le_multiplicity_of_le_emultiplicity
le_emultiplicity_of_pow_dvd
lt_multiplicity_of_lt_emultiplicity πŸ“–mathematicalFiniteMultiplicity
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
multiplicityβ€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
emultiplicity_eq_multiplicity
mul_iff πŸ“–mathematicalPrimeFiniteMultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”mul_left
mul_right
Prime.finiteMultiplicity_mul
mul_left πŸ“–β€”FiniteMultiplicity
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”Dvd.dvd.trans
dvd_mul_right
mul_right πŸ“–β€”FiniteMultiplicity
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”mul_left
mul_comm
multiplicity_add_of_gt πŸ“–mathematicalFiniteMultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
multiplicity
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”multiplicity_eq_of_emultiplicity_eq
emultiplicity_add_of_gt
LT.lt.trans_le
WithTop.coe_strictMono
multiplicity_le_emultiplicity
emultiplicity_eq_multiplicity
multiplicity_eq_iff πŸ“–mathematicalFiniteMultiplicitymultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”emultiplicity_eq_multiplicity
multiplicity_le_multiplicity_iff πŸ“–mathematicalFiniteMultiplicitymultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”WithTop.coe_le_coe
ENat.some_eq_coe
emultiplicity_eq_multiplicity
emultiplicity_le_emultiplicity_iff
multiplicity_lt_iff_not_dvd πŸ“–mathematicalFiniteMultiplicitymultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_dvd_iff_le_multiplicity
not_le
multiplicity_pow πŸ“–mathematicalPrime
FiniteMultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
multiplicity
Monoid.toNatPow
β€”emultiplicity_pow
emultiplicity_eq_multiplicity
pow
ne_zero πŸ“–β€”FiniteMultiplicity
MonoidWithZero.toMonoid
β€”β€”β€”
neg πŸ“–mathematicalFiniteMultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”neg_iff
neg_iff πŸ“–mathematicalβ€”FiniteMultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”
not_dvd_of_one_right πŸ“–mathematicalFiniteMultiplicity
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
semigroupDvd
Monoid.toSemigroup
β€”pow_mul_pow_eq_one
not_iff_forall πŸ“–mathematicalβ€”FiniteMultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_zero
one_dvd
not_of_isUnit_left πŸ“–mathematicalIsUnitFiniteMultiplicityβ€”not_unit
not_of_one_left πŸ“–mathematicalβ€”FiniteMultiplicity
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
not_of_unit_left πŸ“–mathematicalβ€”FiniteMultiplicity
Units.val
β€”not_of_isUnit_left
Units.isUnit
not_pow_dvd_of_multiplicity_lt πŸ“–mathematicalFiniteMultiplicity
multiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”not_pow_dvd_of_emultiplicity_lt
emultiplicity_eq_multiplicity
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
not_unit πŸ“–mathematicalFiniteMultiplicityIsUnitβ€”IsUnit.dvd
IsUnit.pow
one_right πŸ“–mathematicalFiniteMultiplicity
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
multiplicityβ€”multiplicity_eq_iff
pow_zero
zero_add
pow_one
not_dvd_of_one_right
or_of_add πŸ“–β€”FiniteMultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”Distrib.leftDistribClass
pow πŸ“–mathematicalPrime
FiniteMultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPowβ€”zero_add
pow_one
pow_zero
isUnit_iff_dvd_one
pow_succ'
Prime.finiteMultiplicity_mul
pow_dvd_iff_le_multiplicity πŸ“–mathematicalFiniteMultiplicitysemigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
multiplicity
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
pow_dvd_iff_le_emultiplicity
emultiplicity_eq_multiplicity

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
emultiplicity_prod πŸ“–mathematicalPrimeemultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
sum
ENat
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
β€”induction
emultiplicity_of_one_right
Prime.not_unit
prod_insert
sum_insert
emultiplicity_mul

Int

Definitions

NameCategoryTheorems
decidableMultiplicityFinite πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
emultiplicity_natAbs πŸ“–mathematicalβ€”emultiplicity
Nat.instMonoid
instMonoid
β€”natCast_emultiplicity
emultiplicity_neg
finiteMultiplicity_iff πŸ“–mathematicalβ€”FiniteMultiplicity
instMonoid
β€”finiteMultiplicity_iff_finiteMultiplicity_natAbs
Nat.finiteMultiplicity_iff
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
finiteMultiplicity_iff_finiteMultiplicity_natAbs πŸ“–mathematicalβ€”FiniteMultiplicity
instMonoid
Nat.instMonoid
β€”β€”
multiplicity_natAbs πŸ“–mathematicalβ€”multiplicity
Nat.instMonoid
instMonoid
β€”multiplicity_eq_of_emultiplicity_eq
emultiplicity_natAbs
natCast_emultiplicity πŸ“–mathematicalβ€”emultiplicity
instMonoid
Nat.instMonoid
β€”Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
natCast_multiplicity πŸ“–mathematicalβ€”multiplicity
instMonoid
Nat.instMonoid
β€”multiplicity_eq_of_emultiplicity_eq
natCast_emultiplicity

Nat

Definitions

NameCategoryTheorems
decidableFiniteMultiplicity πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
finiteMultiplicity_iff πŸ“–mathematicalβ€”FiniteMultiplicity
instMonoid
β€”not_iff_not
FiniteMultiplicity.not_iff_forall
not_and_or
not_ne_iff
not_lt
zero_dvd_iff
Classical.by_contradiction
lt_of_not_ge
not_lt_of_ge
one_pow
Unique.instSubsingleton

Prime

Theorems

NameKindAssumesProvesValidatesDepends On
finiteMultiplicity_mul πŸ“–mathematicalPrime
FiniteMultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”finiteMultiplicity_mul_aux

(root)

Definitions

NameCategoryTheorems
FiniteMultiplicity πŸ“–MathDef
20 mathmath: Int.finiteMultiplicity_iff, FiniteMultiplicity.not_of_isUnit_left, finiteMultiplicity_iff_emultiplicity_ne_top, FiniteMultiplicity.not_of_one_left, emultiplicity_eq_top, FiniteMultiplicity.neg_iff, Polynomial.finiteMultiplicity_of_degree_pos_of_monic, Int.finiteMultiplicity_iff_finiteMultiplicity_natAbs, FiniteMultiplicity.of_not_isUnit, emultiplicity_lt_top, FiniteMultiplicity.not_iff_forall, FiniteMultiplicity.def, FiniteMultiplicity.of_prime_left, padicValRat.finite_int_prime_iff, FiniteMultiplicity.not_of_unit_left, finiteMultiplicity_of_emultiplicity_eq_natCast, Polynomial.finiteMultiplicity_X_sub_C, FermatLastTheoremForThreeGen.Solution'.multiplicity_lambda_c_finite, FiniteMultiplicity.mul_iff, Nat.finiteMultiplicity_iff
emultiplicity πŸ“–CompOp
93 mathmath: emultiplicity_le_emultiplicity_of_dvd_left, Nat.Prime.emultiplicity_choose_prime_pow_add_emultiplicity, emultiplicity_of_isUnit_right, normalizedFactorsEquivOfQuotEquiv_emultiplicity_eq_emultiplicity, emultiplicity_eq_emultiplicity_iff, emultiplicity_add_eq_min, Finset.emultiplicity_prod, emultiplicity_zero_eq_zero_of_ne_zero, lt_emultiplicity_of_lt_multiplicity, emultiplicity_of_one_right, emultiplicity_lt_iff_not_dvd, emultiplicity_le_emultiplicity_of_dvd_right, emultiplicity_pos_of_dvd, Nat.Prime.emultiplicity_factorial, emultiplicity_eq_of_associated_right, emultiplicity_factor_dvd_iso_eq_emultiplicity_of_mem_normalizedFactors, Nat.Prime.emultiplicity_le_emultiplicity_choose_add, emultiplicity_mk_eq_emultiplicity, FiniteMultiplicity.emultiplicity_self, FiniteMultiplicity.emultiplicity_eq_multiplicity, emultiplicity_pow_sub_pow_of_prime, le_emultiplicity_map, Nat.two_pow_sub_pow, Nat.Prime.emultiplicity_factorial_mul, multiplicity_addValuation_apply, emultiplicity_pow_prime_pow_sub_pow_prime_pow, Int.emultiplicity_pow_sub_pow, Nat.emultiplicity_pow_add_pow, FiniteMultiplicity.emultiplicity_eq_iff_multiplicity_eq, le_emultiplicity_of_le_multiplicity, emultiplicity_le_emultiplicity_iff, emultiplicity_eq_of_associated_left, Nat.Prime.emultiplicity_choose', emultiplicity_eq_zero_iff_multiplicity_eq_zero, emultiplicity_pow_self, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, emultiplicity_eq_zero, Nat.Prime.emultiplicity_choose, Int.two_pow_two_pow_add_two_pow_two_pow, emultiplicity_eq_top, emultiplicity_zero, Nat.emultiplicity_two_factorial_lt, le_emultiplicity_of_pow_dvd, Int.natCast_emultiplicity, FiniteMultiplicity.emultiplicity_le_of_multiplicity_le, Nat.Prime.emultiplicity_self, emultiplicity_one_left, Nat.Prime.emultiplicity_choose_prime_pow, Int.two_pow_sub_pow', emultiplicity_eq_ofNat, pow_dvd_iff_le_emultiplicity, emultiplicity_geom_sumβ‚‚_eq_one, emultiplicity_map_eq, dvd_iff_emultiplicity_pos, emultiplicity_prime_eq_emultiplicity_image_by_factor_orderIso, emultiplicity_prime_le_emultiplicity_image_by_factor_orderIso, squarefree_iff_emultiplicity_le_one, emultiplicity_of_unit_right, FiniteMultiplicity.emultiplicity_lt_of_multiplicity_lt, Int.emultiplicity_pow_add_pow, emultiplicity_lt_top, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_symm_eq_emultiplicity, UniqueFactorizationMonoid.emultiplicity_eq_count_normalizedFactors, Int.two_pow_sub_pow, Nat.Prime.emultiplicity_pow, Int.emultiplicity_natAbs, Nat.Prime.emultiplicity_factorial_le_div_pred, UniqueFactorizationMonoid.le_emultiplicity_iff_replicate_le_normalizedFactors, Nat.Prime.emultiplicity_one, Nat.Prime.emultiplicity_mul, emultiplicity_eq_coe, emultiplicity_pow_prime_sub_pow_prime, Int.two_pow_two_pow_sub_pow_two_pow, emultiplicity_pow, emultiplicity_eq_iff_multiplicity_eq_of_ne_one, min_le_emultiplicity_add, emultiplicity_pos_iff, emultiplicity_eq_of_dvd_of_not_dvd, Nat.Prime.emultiplicity_factorial_mul_succ, Nat.emultiplicity_pow_sub_pow, Nat.Prime.emultiplicity_pow_self, PowerSeries.order_eq_emultiplicity_X, le_emultiplicity_iff_replicate_subperm_primeFactorsList, emultiplicity_pow_self_of_prime, emultiplicity_eq_emultiplicity_span, Nat.emultiplicity_eq_card_pow_dvd, padicValNat.maxPowDiv_eq_emultiplicity, multiplicity_le_emultiplicity, emultiplicity_mul, Polynomial.emultiplicity_le_one_of_separable, padicValNat_eq_emultiplicity, emultiplicity_normalizedFactorsEquivSpanNormalizedFactors_eq_emultiplicity, emultiplicity_neg
multiplicity πŸ“–CompOp
61 mathmath: NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', pow_multiplicity_dvd, FiniteMultiplicity.le_multiplicity_of_le_emultiplicity, Nat.multiplicity_eq_factorization, Int.natCast_multiplicity, padicValNat.maxPowDiv_eq_multiplicity, WittVector.map_frobeniusPoly.keyβ‚‚, multiplicity_eq_zero, FiniteMultiplicity.multiplicity_pow, irreducible_pow_sup_of_ge, padicValRat.of_int_multiplicity, Dvd.multiplicity_pos, FiniteMultiplicity.emultiplicity_eq_multiplicity, FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd, multiplicity_eq_of_emultiplicity_eq, multiplicity_neg, FiniteMultiplicity.emultiplicity_eq_iff_multiplicity_eq, multiplicity_le_of_emultiplicity_le, emultiplicity_eq_zero_iff_multiplicity_eq_zero, multiplicity_lt_of_emultiplicity_lt, multiplicity_of_unit_right, multiplicity_eq_of_associated_right, multiplicity_map_eq, Nat.Prime.emultiplicity_choose_prime_pow, padicValNat_def, WittVector.frobeniusPolyAux_eq, multiplicity_pow_self, multiplicity_pos_of_dvd, FiniteMultiplicity.multiplicity_lt_iff_not_dvd, multiplicity_eq_one_of_not_finiteMultiplicity, Polynomial.rootMultiplicity_eq_multiplicity, padicValRat.multiplicity_sub_multiplicity, padicValNat_def', FiniteMultiplicity.multiplicity_eq_iff, multiplicity_mul, multiplicity_zero_eq_zero_of_ne_zero, Nat.Prime.multiplicity_factorial_pow, FiniteMultiplicity.pow_dvd_iff_le_multiplicity, dvd_iff_multiplicity_pos, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, padicValRat.defn, FiniteMultiplicity.lt_multiplicity_of_lt_emultiplicity, multiplicity_eq_of_dvd_of_not_dvd, emultiplicity_eq_iff_multiplicity_eq_of_ne_one, emultiplicity_pos_iff, Ideal.IsDedekindDomain.ramificationIdx_eq_multiplicity, WittVector.map_frobeniusPoly.key₁, FiniteMultiplicity.le_multiplicity_of_pow_dvd, padicValInt.of_ne_one_ne_zero, multiplicity_add_eq_min, FiniteMultiplicity.multiplicity_le_multiplicity_iff, multiplicity_eq_of_associated_left, multiplicity_of_isUnit_right, multiplicity_self, multiplicity_le_emultiplicity, multiplicity_of_one_right, Nat.Prime.sub_one_mul_multiplicity_factorial, Int.multiplicity_natAbs, FiniteMultiplicity.one_right, multiplicity_pow_self_of_prime, multiplicity_eq_of_emultiplicity_eq_some

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_iff_emultiplicity_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
emultiplicity
semigroupDvd
Monoid.toSemigroup
β€”emultiplicity_pos_iff
dvd_iff_multiplicity_pos
dvd_iff_multiplicity_pos πŸ“–mathematicalβ€”multiplicity
semigroupDvd
Monoid.toSemigroup
β€”dvd_of_multiplicity_pos
dvd_of_emultiplicity_pos πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
emultiplicity
semigroupDvd
Monoid.toSemigroup
β€”pow_dvd_of_le_emultiplicity
Order.add_one_le_of_lt
pow_one
dvd_of_multiplicity_pos πŸ“–mathematicalmultiplicitysemigroupDvd
Monoid.toSemigroup
β€”dvd_of_emultiplicity_pos
lt_emultiplicity_of_lt_multiplicity
emultiplicity_add_eq_min πŸ“–mathematicalβ€”emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
β€”lt_trichotomy
add_comm
emultiplicity_add_of_gt
min_eq_left
le_of_lt
min_eq_right
emultiplicity_add_of_gt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”finiteMultiplicity_iff_emultiplicity_ne_top
FiniteMultiplicity.emultiplicity_eq_multiplicity
emultiplicity_eq_of_dvd_of_not_dvd
dvd_add
Distrib.leftDistribClass
pow_dvd_of_le_emultiplicity
LT.lt.le
dvd_add_right
Order.add_one_le_of_lt
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
emultiplicity_eq_coe πŸ“–mathematicalβ€”emultiplicity
ENat
ENat.instNatCast
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_dvd_of_le_emultiplicity
not_pow_dvd_of_emultiplicity_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
emultiplicity_eq_of_dvd_of_not_dvd
emultiplicity_eq_emultiplicity_iff πŸ“–mathematicalβ€”emultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”emultiplicity_le_emultiplicity_iff
Eq.le
Eq.ge
le_antisymm
emultiplicity_eq_iff_multiplicity_eq_of_ne_one πŸ“–mathematicalβ€”emultiplicity
ENat
ENat.instNatCast
multiplicity
β€”multiplicity_eq_of_emultiplicity_eq_some
emultiplicity_eq_ofNat πŸ“–mathematicalβ€”emultiplicity
Nat.instMonoid
Monoid.toNatPow
β€”emultiplicity_eq_coe
emultiplicity_eq_of_associated_left πŸ“–mathematicalAssociated
CommMonoid.toMonoid
emultiplicityβ€”le_antisymm
emultiplicity_le_emultiplicity_of_dvd_left
Associated.dvd
Associated.symm
emultiplicity_eq_of_associated_right πŸ“–mathematicalAssociatedemultiplicityβ€”le_antisymm
emultiplicity_le_emultiplicity_of_dvd_right
Associated.dvd
Associated.symm
emultiplicity_eq_of_dvd_of_not_dvd πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
emultiplicity
ENat
ENat.instNatCast
β€”Dvd.dvd.trans
pow_dvd_pow
emultiplicity_eq_top πŸ“–mathematicalβ€”emultiplicity
Top.top
ENat
instTopENat
FiniteMultiplicity
β€”β€”
emultiplicity_eq_zero πŸ“–mathematicalβ€”emultiplicity
ENat
instZeroENat
semigroupDvd
Monoid.toSemigroup
β€”ENat.coe_zero
emultiplicity_eq_coe
pow_zero
zero_add
pow_one
emultiplicity_eq_top
FiniteMultiplicity.not_iff_forall
emultiplicity_eq_zero_iff_multiplicity_eq_zero πŸ“–mathematicalβ€”emultiplicity
ENat
instZeroENat
multiplicity
β€”emultiplicity_eq_iff_multiplicity_eq_of_ne_one
zero_ne_one
emultiplicity_le_emultiplicity_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_dvd_of_le_emultiplicity
le_trans
le_emultiplicity_of_pow_dvd
Nat.find.congr_simp
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
emultiplicity_le_emultiplicity_of_dvd_left πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
β€”emultiplicity_le_emultiplicity_iff
Dvd.dvd.trans
pow_dvd_pow_of_dvd
emultiplicity_le_emultiplicity_of_dvd_right πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
β€”emultiplicity_le_emultiplicity_iff
Dvd.dvd.trans
emultiplicity_lt_iff_not_dvd πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_dvd_iff_le_emultiplicity
not_le
emultiplicity_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
Top.top
instTopENat
FiniteMultiplicity
β€”β€”
emultiplicity_map_eq πŸ“–mathematicalβ€”emultiplicity
DFunLike.coe
EquivLike.toFunLike
β€”MulEquivClass.instMonoidHomClass
emultiplicity_mk_eq_emultiplicity πŸ“–mathematicalβ€”emultiplicity
Associates
CommMonoid.toMonoid
Associates.instCommMonoid
β€”β€”
emultiplicity_mul πŸ“–mathematicalPrimeemultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”FiniteMultiplicity.emultiplicity_eq_multiplicity
FiniteMultiplicity.mul_left
FiniteMultiplicity.mul_right
multiplicity_mul
emultiplicity_eq_top
WithTop.add_eq_top
FiniteMultiplicity.mul_iff
emultiplicity_ne_of_multiplicity_ne πŸ“–β€”β€”β€”β€”multiplicity_eq_of_emultiplicity_eq_some
emultiplicity_ne_zero πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”β€”
emultiplicity_neg πŸ“–mathematicalβ€”emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”emultiplicity_eq_emultiplicity_iff
emultiplicity_of_isUnit_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
emultiplicity
ENat
instZeroENat
β€”emultiplicity_eq_zero
isUnit_of_dvd_unit
emultiplicity_of_one_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
emultiplicity
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
ENat
instZeroENat
β€”emultiplicity_of_isUnit_right
isUnit_one
emultiplicity_of_unit_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
emultiplicity
Units.val
ENat
instZeroENat
β€”emultiplicity_of_isUnit_right
Units.isUnit
emultiplicity_one_left πŸ“–mathematicalβ€”emultiplicity
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
Top.top
ENat
instTopENat
β€”emultiplicity_eq_top
FiniteMultiplicity.not_of_one_left
emultiplicity_pos_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
emultiplicity
multiplicity
β€”Nat.instCanonicallyOrderedAdd
emultiplicity_pos_of_dvd πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
emultiplicity
β€”lt_emultiplicity_of_lt_multiplicity
multiplicity_pos_of_dvd
emultiplicity_pow πŸ“–mathematicalPrimeemultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
β€”pow_zero
emultiplicity_of_one_right
Prime.not_unit
Nat.cast_zero
MulZeroClass.zero_mul
pow_succ
emultiplicity_mul
Nat.cast_add
Nat.cast_one
add_mul
Distrib.rightDistribClass
one_mul
emultiplicity_pow_self πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
emultiplicity
Monoid.toNatPow
ENat
ENat.instNatCast
β€”emultiplicity_eq_of_dvd_of_not_dvd
dvd_refl
pow_dvd_pow_iff
emultiplicity_pow_self_of_prime πŸ“–mathematicalPrimeemultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
ENat
ENat.instNatCast
β€”emultiplicity_pow_self
Prime.ne_zero
Prime.not_unit
emultiplicity_sub_of_gt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”sub_eq_add_neg
emultiplicity_add_of_gt
emultiplicity_neg
emultiplicity_zero πŸ“–mathematicalβ€”emultiplicity
MonoidWithZero.toMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Top.top
ENat
instTopENat
β€”emultiplicity_eq_top
FiniteMultiplicity.ne_zero
emultiplicity_zero_eq_zero_of_ne_zero πŸ“–mathematicalβ€”emultiplicity
MonoidWithZero.toMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
ENat
instZeroENat
β€”emultiplicity_eq_zero
zero_dvd_iff
finiteMultiplicity_iff_emultiplicity_ne_top πŸ“–mathematicalβ€”FiniteMultiplicityβ€”β€”
finiteMultiplicity_mul_aux πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”
finiteMultiplicity_of_emultiplicity_eq_natCast πŸ“–mathematicalemultiplicity
ENat
ENat.instNatCast
FiniteMultiplicityβ€”emultiplicity_eq_top
le_emultiplicity_map πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
DFunLike.coe
β€”emultiplicity_le_emultiplicity_iff
map_pow
map_dvd
MonoidHomClass.toMulHomClass
le_emultiplicity_of_le_multiplicity πŸ“–mathematicalmultiplicityENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
β€”LE.le.trans
WithTop.coe_mono
multiplicity_le_emultiplicity
le_emultiplicity_of_pow_dvd πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
β€”le_of_not_gt
not_pow_dvd_of_emultiplicity_lt
lt_emultiplicity_of_lt_multiplicity πŸ“–mathematicalmultiplicityENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
β€”LT.lt.trans_le
WithTop.coe_strictMono
multiplicity_le_emultiplicity
min_le_emultiplicity_add πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
SemilatticeInf.toMin
emultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Mathlib.Tactic.Contrapose.contrapose₃
FiniteMultiplicity.or_of_add
le_emultiplicity_of_pow_dvd
Distrib.leftDistribClass
multiplicity_add_eq_min πŸ“–mathematicalFiniteMultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
multiplicity
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”lt_trichotomy
add_comm
FiniteMultiplicity.multiplicity_add_of_gt
min_eq_left
le_of_lt
min_eq_right
multiplicity_eq_of_associated_left πŸ“–mathematicalAssociated
CommMonoid.toMonoid
multiplicityβ€”multiplicity_eq_of_emultiplicity_eq
emultiplicity_eq_of_associated_left
multiplicity_eq_of_associated_right πŸ“–mathematicalAssociatedmultiplicityβ€”multiplicity_eq_of_emultiplicity_eq
emultiplicity_eq_of_associated_right
multiplicity_eq_of_dvd_of_not_dvd πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
multiplicityβ€”multiplicity_eq_of_emultiplicity_eq_some
emultiplicity_eq_of_dvd_of_not_dvd
multiplicity_eq_of_emultiplicity_eq πŸ“–mathematicalemultiplicitymultiplicityβ€”β€”
multiplicity_eq_of_emultiplicity_eq_some πŸ“–mathematicalemultiplicity
ENat
ENat.instNatCast
multiplicityβ€”β€”
multiplicity_eq_one_of_not_finiteMultiplicity πŸ“–mathematicalFiniteMultiplicitymultiplicityβ€”emultiplicity_eq_top
multiplicity_eq_zero πŸ“–mathematicalβ€”multiplicity
semigroupDvd
Monoid.toSemigroup
β€”emultiplicity_eq_iff_multiplicity_eq_of_ne_one
zero_ne_one
emultiplicity_eq_zero
multiplicity_eq_zero_of_coprime πŸ“–β€”multiplicity
Nat.instMonoid
β€”β€”LT.lt.ne
LT.lt.trans_le
multiplicity_le_emultiplicity πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
multiplicity
emultiplicity
β€”FiniteMultiplicity.emultiplicity_eq_multiplicity
multiplicity_eq_one_of_not_finiteMultiplicity
Nat.cast_one
emultiplicity_eq_top
multiplicity_le_of_emultiplicity_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
multiplicityβ€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
LE.le.trans
multiplicity_le_emultiplicity
multiplicity_lt_of_emultiplicity_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
multiplicityβ€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
LE.le.trans_lt
multiplicity_le_emultiplicity
multiplicity_map_eq πŸ“–mathematicalβ€”multiplicity
DFunLike.coe
EquivLike.toFunLike
β€”multiplicity_eq_of_emultiplicity_eq
emultiplicity_map_eq
multiplicity_mul πŸ“–mathematicalPrime
FiniteMultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
multiplicityβ€”pow_multiplicity_dvd
pow_add
mul_dvd_mul
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
FiniteMultiplicity.mul_left
FiniteMultiplicity.mul_right
succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul
FiniteMultiplicity.multiplicity_eq_iff
multiplicity_ne_zero πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
β€”β€”
multiplicity_neg πŸ“–mathematicalβ€”multiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”multiplicity_eq_of_emultiplicity_eq
emultiplicity_neg
multiplicity_of_isUnit_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
multiplicityβ€”multiplicity_eq_zero
isUnit_of_dvd_unit
multiplicity_of_one_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
multiplicity
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”multiplicity_of_isUnit_right
isUnit_one
multiplicity_of_unit_right πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
multiplicity
Units.val
β€”multiplicity_of_isUnit_right
Units.isUnit
multiplicity_pos_of_dvd πŸ“–mathematicalsemigroupDvd
Monoid.toSemigroup
multiplicityβ€”pow_one
FiniteMultiplicity.not_pow_dvd_of_multiplicity_lt
multiplicity_eq_one_of_not_finiteMultiplicity
multiplicity_pow_self πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
multiplicity
Monoid.toNatPow
β€”multiplicity_eq_of_emultiplicity_eq_some
emultiplicity_pow_self
multiplicity_pow_self_of_prime πŸ“–mathematicalPrimemultiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
β€”multiplicity_pow_self
Prime.ne_zero
Prime.not_unit
multiplicity_self πŸ“–mathematicalβ€”multiplicity
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”FiniteMultiplicity.multiplicity_eq_iff
pow_one
sq
mul_assoc
IsCancelMulZero.toIsLeftCancelMulZero
mul_one
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
FiniteMultiplicity.not_unit
FiniteMultiplicity.ne_zero
multiplicity_eq_one_of_not_finiteMultiplicity
multiplicity_sub_of_gt πŸ“–mathematicalmultiplicity
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
FiniteMultiplicity
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”sub_eq_add_neg
FiniteMultiplicity.multiplicity_add_of_gt
FiniteMultiplicity.neg
multiplicity_neg
multiplicity_zero_eq_zero_of_ne_zero πŸ“–mathematicalβ€”multiplicity
MonoidWithZero.toMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”multiplicity_eq_zero
zero_dvd_iff
not_pow_dvd_of_emultiplicity_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
ENat.instNatCast
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Dvd.dvd.trans
pow_dvd_pow
pow_dvd_iff_le_emultiplicity πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
β€”le_emultiplicity_of_pow_dvd
pow_dvd_of_le_emultiplicity
pow_dvd_of_le_emultiplicity πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
emultiplicity
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_zero
FiniteMultiplicity.not_iff_forall
Nat.find_min
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
pow_dvd_of_le_multiplicity πŸ“–mathematicalmultiplicitysemigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”pow_dvd_of_le_emultiplicity
le_emultiplicity_of_le_multiplicity
pow_multiplicity_dvd πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
multiplicity
β€”pow_dvd_of_le_multiplicity
le_rfl

---

← Back to Index