Documentation Verification Report

MvPolynomial

πŸ“ Source: Mathlib/RingTheory/MvPolynomial.lean

Statistics

MetricCount
Definitions0
Theoremsfinrank_eq_one, finrank_eq_zero, quotient_mk_comp_C_injective, rank_eq, rank_eq_lift
5
Total5

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_eq_one πŸ“–mathematicalβ€”Module.finrank
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
module
Semiring.toModule
β€”Module.rank_eq_one_iff_finrank_eq_one
subsingleton_or_nontrivial
rank_subsingleton
rank_eq_lift
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one
Cardinal.lift_one
finrank_eq_zero πŸ“–mathematicalβ€”Module.finrank
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
module
Semiring.toModule
β€”LinearIndependent.finrank_eq_zero_of_infinite
Finsupp.infinite_of_right
instInfiniteNat
Module.Basis.linearIndependent
quotient_mk_comp_C_injective πŸ“–mathematicalβ€”HasQuotient.Quotient
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
Ideal
Ring.toSemiring
CommRing.toRing
instCommRingMvPolynomial
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ideal.instHasQuotient
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
RingHom.comp
C
β€”Ideal.instIsTwoSided_1
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
by_contradiction
Ideal.eq_top_iff_one
Ideal.mul_mem_left
Ideal.Quotient.eq_zero_iff_mem
RingHom.comp_apply
C_1
inv_mul_cancelβ‚€
RingHom.map_mul
rank_eq πŸ“–mathematicalβ€”Module.rank
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
module
Semiring.toModule
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
β€”Module.Basis.mk_eq_rank
commRing_strongRankCondition
rank_eq_lift πŸ“–mathematicalβ€”Module.rank
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
module
Semiring.toModule
Cardinal.lift
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
β€”Module.Basis.mk_eq_rank
commRing_strongRankCondition
Cardinal.lift_lift
Cardinal.lift_umax

---

← Back to Index