Documentation Verification Report

MonomialOrder

πŸ“ Source: Mathlib/RingTheory/MvPolynomial/MonomialOrder.lean

Statistics

MetricCount
DefinitionsMonomialOrder, decidable, degree, leadingCoeff, leadingTerm, sPolynomial
6
TheoremsC_mul_leadingCoeff_monomial_degree, add_of_lt, coeff_degree, leadingCoeff_eq_one, mul, ne_zero, of_subsingleton, pow, prod, coeff_degree_eq_zero_iff, coeff_degree_ne_zero_iff, coeff_eq_zero_of_lt, coeff_mul_of_add_of_degree_le, coeff_mul_of_degree_add, coeff_pow_nsmul_degree, coeff_prod_sum_degree, coeff_sPolynomial_sup_eq_zero, degree_C, degree_X, degree_X_add_C, degree_X_le_single, degree_X_sub_C, degree_add_eq_right_of_lt, degree_add_le, degree_add_of_lt, degree_add_of_ne, degree_eq_zero_iff, degree_eq_zero_iff_totalDegree_eq_zero, degree_le_iff, degree_leadingTerm, degree_leadingTerm_mul, degree_lt_iff, degree_lt_of_left_ne_zero_of_degree_mul_lt, degree_mem_support, degree_mem_support_iff, degree_monomial, degree_monomial_le, degree_mul, degree_mul', degree_mul_le, degree_mul_leadingTerm, degree_mul_lt_iff_left_lt_of_ne_zero, degree_mul_of_isRegular_left, degree_mul_of_isRegular_right, degree_mul_of_left_mem_nonZeroDivisors, degree_mul_of_mul_leadingCoeff_ne_zero, degree_mul_of_right_mem_nonZeroDivisors, degree_ne_zero_of_sub_leadingTerm_ne_zero, degree_neg, degree_one, degree_pow, degree_pow_le, degree_pow_of_pow_leadingCoeff_ne_zero, degree_prod, degree_prod_le, degree_prod_of_mem_nonZeroDivisors, degree_prod_of_regular, degree_sPolynomial, degree_sPolynomial_le, degree_sPolynomial_lt_sup_degree, degree_smul, degree_smul_le, degree_smul_of_isRegular, degree_smul_of_mem_nonZeroDivisors, degree_sub_le, degree_sub_leadingTerm_le, degree_sub_leadingTerm_lt_degree, degree_sub_leadingTerm_lt_iff, degree_sub_of_lt, degree_subsingleton, degree_sum_le, degree_zero, eq_C_of_degree_eq_zero, image_leadingTerm_insert_zero, image_leadingTerm_sdiff_singleton_zero, isUnit_leadingCoeff, le_degree, leadingCoeff_C, leadingCoeff_X, leadingCoeff_add_of_lt, leadingCoeff_eq_zero_iff, leadingCoeff_leadingTerm, leadingCoeff_monomial, leadingCoeff_mul, leadingCoeff_mul_of_isRegular_left, leadingCoeff_mul_of_isRegular_right, leadingCoeff_mul_of_left_mem_nonZeroDivisors, leadingCoeff_mul_of_mul_leadingCoeff_ne_zero, leadingCoeff_mul_of_right_mem_nonZeroDivisors, leadingCoeff_ne_zero_iff, leadingCoeff_neg, leadingCoeff_one, leadingCoeff_pow, leadingCoeff_pow_of_pow_leadingCoeff_ne_zero, leadingCoeff_prod_of_mem_nonZeroDivisors, leadingCoeff_prod_of_regular, leadingCoeff_sub_of_lt, leadingCoeff_zero, leadingTerm_C, leadingTerm_eq_zero_iff, leadingTerm_leadingTerm, leadingTerm_monomial, leadingTerm_zero, monic_X, monic_X_add_C, monic_X_sub_C, monic_monomial, monic_monomial_one, monic_one, ne_zero_of_degree_ne_zero, notMem_support_of_degree_lt, sPolynomial_antisymm, sPolynomial_decomposition, sPolynomial_decomposition', sPolynomial_def, sPolynomial_leadingTerm_mul, sPolynomial_leadingTerm_mul', sPolynomial_left_zero, sPolynomial_lt_of_degree_ne_zero_of_degree_eq, sPolynomial_monomial_mul, sPolynomial_monomial_mul', sPolynomial_mul_monomial, sPolynomial_right_zero, sPolynomial_self
124
Total130

MonomialOrder

Definitions

NameCategoryTheorems
degree πŸ“–CompOp
73 mathmath: sPolynomial_leadingTerm_mul', degree_add_of_ne, degree_monomial, degree_X, degree_sub_le, degree_lt_iff, degree_mem_support_iff, div_single, degree_add_le, le_degree, degree_mul_leadingTerm, span_leadingTerm_eq_span_monomial, span_leadingTerm_eq_span_monomialβ‚€, degree_neg, coeff_prod_sum_degree, degree_le_iff, degree_mul_of_isRegular_right, MvPolynomial.degree_degLexDegree, degree_sum_le, degree_mul_of_mul_leadingCoeff_ne_zero, degree_subsingleton, degree_leadingTerm_mul, span_leadingTerm_eq_span_monomial', degree_X_sub_C, degree_mul_lt_iff_left_lt_of_ne_zero, degree_smul_le, degree_mul_le, sPolynomial_def, degree_mul_of_left_mem_nonZeroDivisors, degree_pow_le, degree_C, coeff_degree_eq_zero_iff, degree_smul_of_isRegular, degree_one, sPolynomial_monomial_mul, degree_eq_zero_iff_totalDegree_eq_zero, degree_eq_zero_iff, degree_mem_support, degree_prod_le, div_set, degree_zero, coeff_pow_nsmul_degree, degree_pow, sPolynomial_monomial_mul', Monic.coeff_degree, degree_prod, degree_smul, degree_leadingTerm, degree_mul_of_isRegular_left, div, degree_sPolynomial_le, degree_X_add_C, coeff_mul_of_degree_add, degree_sub_leadingTerm_lt_degree, coeff_sPolynomial_sup_eq_zero, degree_mul, degree_monomial_le, degree_sub_LTerm_lt, degree_prod_of_regular, C_mul_leadingCoeff_monomial_degree, degree_mul', degree_sPolynomial_lt_sup_degree, degree_sub_leadingTerm_lt_iff, degree_mul_of_right_mem_nonZeroDivisors, degree_sub_leadingTerm_le, degree_smul_of_mem_nonZeroDivisors, degree_sub_LTerm_le, sPolynomial_mul_monomial, degree_prod_of_mem_nonZeroDivisors, degree_pow_of_pow_leadingCoeff_ne_zero, sPolynomial_leadingTerm_mul, degree_sPolynomial, degree_X_le_single
leadingCoeff πŸ“–CompOp
25 mathmath: sPolynomial_leadingTerm_mul', leadingCoeff_eq_zero_iff, leadingCoeff_mul, eq_C_of_degree_eq_zero, isUnit_leadingCoeff, coeff_prod_sum_degree, leadingCoeff_pow_of_pow_leadingCoeff_ne_zero, leadingCoeff_leadingTerm, sPolynomial_def, leadingCoeff_monomial, Monic.leadingCoeff_eq_one, leadingCoeff_add_of_lt, degree_eq_zero_iff, leadingCoeff_neg, leadingCoeff_C, coeff_pow_nsmul_degree, leadingCoeff_pow, leadingCoeff_zero, leadingCoeff_X, leadingCoeff_sub_of_lt, coeff_mul_of_degree_add, leadingCoeff_one, C_mul_leadingCoeff_monomial_degree, leadingCoeff_mul_of_mul_leadingCoeff_ne_zero, sPolynomial_leadingTerm_mul
leadingTerm πŸ“–CompOp
22 mathmath: sPolynomial_leadingTerm_mul', span_leadingTerm_sdiff_singleton_zero, leadingTerm_zero, image_leadingTerm_sdiff_singleton_zero, leadingTerm_monomial, degree_mul_leadingTerm, span_leadingTerm_eq_span_monomial, span_leadingTerm_eq_span_monomialβ‚€, degree_leadingTerm_mul, span_leadingTerm_eq_span_monomial', leadingCoeff_leadingTerm, leadingTerm_leadingTerm, image_leadingTerm_insert_zero, leadingTerm_C, span_leadingTerm_insert_zero, degree_leadingTerm, degree_sub_leadingTerm_lt_degree, C_mul_leadingCoeff_monomial_degree, leadingTerm_eq_zero_iff, degree_sub_leadingTerm_lt_iff, degree_sub_leadingTerm_le, sPolynomial_leadingTerm_mul
sPolynomial πŸ“–CompOp
19 mathmath: sPolynomial_leadingTerm_mul', sPolynomial_self, sPolynomial_def, sPolynomial_antisymm, sPolynomial_left_zero, sPolynomial_decomposition, sPolynomial_right_zero, sPolynomial_monomial_mul, sPolynomial_monomial_mul', sPolynomial_mem_ideal, degree_sPolynomial_le, coeff_sPolynomial_sup_eq_zero, sPolynomial_mem_sup_ideal, sPolynomial_lt_of_degree_ne_zero_of_degree_eq, sPolynomial_decomposition', degree_sPolynomial_lt_sup_degree, sPolynomial_mul_monomial, sPolynomial_leadingTerm_mul, degree_sPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
C_mul_leadingCoeff_monomial_degree πŸ“–mathematicalβ€”MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
MvPolynomial.C
leadingCoeff
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
degree
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
leadingTerm
β€”MvPolynomial.C_mul_monomial
mul_one
leadingTerm.eq_1
coeff_degree_eq_zero_iff πŸ“–mathematicalβ€”MvPolynomial.coeff
degree
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial
MvPolynomial.commSemiring
β€”leadingCoeff_eq_zero_iff
coeff_degree_ne_zero_iff πŸ“–β€”β€”β€”β€”leadingCoeff_ne_zero_iff
coeff_eq_zero_of_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial.coeff
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”not_le
le_degree
MvPolynomial.mem_support_iff
coeff_mul_of_add_of_degree_le πŸ“–mathematicalsyn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial.coeff
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”MvPolynomial.coeff_mul
Finset.sum_eq_single
coeff_eq_zero_of_lt
MulZeroClass.zero_mul
not_le
AddEquiv.injective
le_antisymm
le_trans
not_lt
le_of_add_le_add_right
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
iocam
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
Finsupp.instIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
MulZeroClass.mul_zero
instIsEmptyFalse
coeff_mul_of_degree_add πŸ“–mathematicalβ€”MvPolynomial.coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
leadingCoeff
β€”coeff_mul_of_add_of_degree_le
le_of_eq
coeff_pow_nsmul_degree πŸ“–mathematicalβ€”MvPolynomial.coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
degree
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
leadingCoeff
β€”zero_nsmul
pow_zero
MvPolynomial.coeff_zero_one
add_smul
one_smul
pow_add
pow_one
coeff_mul_of_add_of_degree_le
degree_pow_le
le_rfl
leadingCoeff.eq_1
coeff_prod_sum_degree πŸ“–mathematicalβ€”MvPolynomial.coeff
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
degree
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
leadingCoeff
β€”Finset.induction_on
MvPolynomial.coeff_zero_one
Finset.sum_insert
Finset.prod_insert
coeff_mul_of_add_of_degree_le
le_of_eq
degree_prod_le
coeff_sPolynomial_sup_eq_zero πŸ“–mathematicalβ€”MvPolynomial.coeff
CommRing.toCommSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
degree
sPolynomial
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_def
MvPolynomial.coeff_sub
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.isOrderedAddMonoid
Finsupp.orderedSub
le_sup_left
MvPolynomial.coeff_monomial_mul
le_sup_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
degree_C πŸ“–mathematicalβ€”degree
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
β€”degree_eq_zero_iff_totalDegree_eq_zero
MvPolynomial.totalDegree_C
degree_X πŸ“–mathematicalβ€”degree
MvPolynomial.X
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
β€”degree_monomial
one_ne_zero
NeZero.one
degree_X_add_C πŸ“–mathematicalβ€”degree
CommRing.toCommSemiring
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
MvPolynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
β€”degree_add_of_lt
degree_C
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
degree_X
bot_eq_zero
bot_lt_iff_ne_bot
EquivLike.toEmbeddingLike
degree_X_le_single πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial.X
Finsupp.single
β€”degree_monomial_le
degree_X_sub_C πŸ“–mathematicalβ€”degree
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
MvPolynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
β€”sub_eq_add_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
degree_X_add_C
degree_add_eq_right_of_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”add_comm
degree_add_of_lt
degree_add_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”AddEquiv.apply_symm_apply
degree_le_iff
le_degree
MvPolynomial.coeff_add
zero_add
degree_add_of_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”AddEquiv.injective
le_antisymm
le_trans
degree_add_le
le_of_lt
le_degree
MvPolynomial.mem_support_iff
MvPolynomial.coeff_add
coeff_eq_zero_of_lt
add_zero
leadingCoeff.eq_1
leadingCoeff_ne_zero_iff
not_le
degree_zero
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
bot_le
degree_add_of_ne πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
syn
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
β€”degree_add_of_lt
sup_of_le_left
le_of_lt
add_comm
EmbeddingLike.apply_eq_iff_eq
EquivLike.toEmbeddingLike
le_iff_eq_or_lt
not_lt
right_eq_sup
degree_eq_zero_iff πŸ“–mathematicalβ€”degree
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
leadingCoeff
β€”eq_C_of_degree_eq_zero
degree_C
degree_eq_zero_iff_totalDegree_eq_zero πŸ“–mathematicalβ€”degree
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
MvPolynomial.totalDegree
β€”AddEquiv.injective
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
bot_eq_zero
eq_bot_iff
AddEquiv.map_zero
degree_le_iff
MvPolynomial.totalDegree_eq_zero_iff
EquivLike.toEmbeddingLike
Finsupp.ext_iff
degree_le_iff πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
β€”AddEquiv.apply_symm_apply
degree_leadingTerm πŸ“–mathematicalβ€”degree
leadingTerm
β€”degree_monomial
degree_zero
degree_leadingTerm_mul πŸ“–mathematicalβ€”degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
leadingTerm
β€”degree_mul
degree_monomial
Mathlib.Tactic.Push.not_and_or_eq
leadingTerm_zero
MulZeroClass.zero_mul
degree_zero
MulZeroClass.mul_zero
degree_lt_iff πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
Finsupp.instZero
degreeβ€”AddEquiv.apply_symm_apply
Finset.sup_lt_iff
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
degree_lt_of_left_ne_zero_of_degree_mul_lt πŸ“–β€”syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”β€”degree_mul
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
iocam
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_le_of_lt'
degree_mul_le
MulZeroClass.mul_zero
degree_zero
map_zero
AddMonoidHomClass.toZeroHomClass
degree_mem_support πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finset
Finset.instMembership
MvPolynomial.support
degree
β€”MvPolynomial.mem_support_iff
coeff_degree_ne_zero_iff
degree_mem_support_iff πŸ“–mathematicalβ€”Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finset
Finset.instMembership
MvPolynomial.support
degree
β€”MvPolynomial.mem_support_iff
coeff_degree_ne_zero_iff
degree_monomial πŸ“–mathematicalβ€”degree
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
NonUnitalNonAssocSemiring.toMulZeroClass
Finsupp.instZero
β€”MvPolynomial.support_monomial
Finset.sup_empty
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
Finset.sup_singleton
AddEquiv.symm_apply_apply
degree_monomial_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
β€”AddEquiv.apply_symm_apply
le_trans
Finset.sup_mono
MvPolynomial.support_monomial_subset
Finset.sup_singleton
degree_mul πŸ“–mathematicalβ€”degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”degree_mul_of_mul_leadingCoeff_ne_zero
degree_mul' πŸ“–mathematicalβ€”degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”degree_mul
ne_zero_and_ne_zero_of_mul
degree_mul_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”degree_le_iff
not_lt
MvPolynomial.mem_support_iff
not_imp_not
MvPolynomial.coeff_mul
Finset.sum_eq_zero
coeff_eq_zero_of_lt
MulZeroClass.zero_mul
lt_of_add_lt_add_left
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
iocam
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
lt_imp_lt_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
le_refl
MulZeroClass.mul_zero
degree_mul_leadingTerm πŸ“–mathematicalβ€”degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
leadingTerm
β€”degree_leadingTerm_mul
mul_comm
degree_mul_lt_iff_left_lt_of_ne_zero πŸ“–mathematicalβ€”syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”degree_lt_of_left_ne_zero_of_degree_mul_lt
degree_mul
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
Mathlib.Tactic.Contrapose.contrapose₃
degree_zero
map_zero
AddMonoidHomClass.toZeroHomClass
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
iocam
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
degree_mul_of_isRegular_left πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
leadingCoeff
degree
MvPolynomial
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”degree_mul_of_mul_leadingCoeff_ne_zero
degree_mul_of_isRegular_right πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
leadingCoeff
degree
MvPolynomial
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”mul_comm
degree_mul_of_isRegular_left
add_comm
degree_mul_of_left_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”degree_mul_of_mul_leadingCoeff_ne_zero
not_imp_not
mem_nonZeroDivisors_iff
degree_mul_of_mul_leadingCoeff_ne_zero πŸ“–mathematicalβ€”degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”AddEquiv.injective
le_antisymm
degree_mul_le
le_degree
MvPolynomial.mem_support_iff
coeff_mul_of_degree_add
degree_mul_of_right_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
degree
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
β€”degree_mul_of_left_mem_nonZeroDivisors
mul_comm
add_comm
degree_ne_zero_of_sub_leadingTerm_ne_zero πŸ“–β€”β€”β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
degree_eq_zero_iff
leadingTerm_C
sub_eq_zero
degree_neg πŸ“–mathematicalβ€”degree
CommRing.toCommSemiring
MvPolynomial
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
β€”MvPolynomial.support_neg
degree_one πŸ“–mathematicalβ€”degree
MvPolynomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
degree_subsingleton
MvPolynomial.one_def
degree_monomial
NeZero.one
degree_pow πŸ“–mathematicalβ€”degree
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
β€”degree_zero
smul_zero
pow_zero
degree_one
zero_pow
degree_pow_of_pow_leadingCoeff_ne_zero
pow_ne_zero
leadingCoeff_ne_zero_iff
degree_pow_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp.instNatSMul
β€”pow_zero
degree_one
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
zero_nsmul
pow_add
pow_one
add_smul
one_smul
le_trans
degree_mul_le
map_add
AddMonoidHomClass.toAddHomClass
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
iocam
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
IsCancelAdd.toIsRightCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
degree_pow_of_pow_leadingCoeff_ne_zero πŸ“–mathematicalβ€”degree
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
β€”AddEquiv.injective
le_antisymm
degree_pow_le
le_degree
MvPolynomial.mem_support_iff
coeff_pow_nsmul_degree
degree_prod πŸ“–mathematicalβ€”degree
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
β€”subsingleton_or_nontrivial
Finset.prod_congr
Unique.instSubsingleton
degree_subsingleton
Finset.sum_congr
Finset.sum_const_zero
AddEquiv.injective
le_antisymm
degree_prod_le
le_degree
coeff_prod_sum_degree
degree_prod_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
Finset.sum
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
β€”Finset.induction_on
MvPolynomial.C_1
degree_C
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
le_refl
Finset.prod_insert
Finset.sum_insert
le_trans
degree_mul_le
map_add
AddMonoidHomClass.toAddHomClass
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
iocam
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
IsCancelAdd.toIsLeftCancelAdd
IsOrderedCancelAddMonoid.toIsCancelAdd
contravariant_lt_of_covariant_le
degree_prod_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
degree
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
β€”subsingleton_or_nontrivial
Finset.prod_congr
Unique.instSubsingleton
degree_subsingleton
Finset.sum_congr
Finset.sum_const_zero
AddEquiv.injective
le_antisymm
degree_prod_le
le_degree
MvPolynomial.mem_support_iff
coeff_prod_sum_degree
nonZeroDivisors.ne_zero
prod_mem_nonZeroDivisors_of_mem_nonZeroDivisors
degree_prod_of_regular πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
leadingCoeff
degree
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
β€”subsingleton_or_nontrivial
Finset.prod_congr
Unique.instSubsingleton
degree_subsingleton
Finset.sum_congr
Finset.sum_const_zero
AddEquiv.injective
le_antisymm
degree_prod_le
le_degree
MvPolynomial.mem_support_iff
coeff_prod_sum_degree
IsRegular.ne_zero
IsRegular.prod
degree_sPolynomial πŸ“–mathematicalβ€”syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
sPolynomial
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
MvPolynomial
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”degree_eq_zero_iff
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_def
sup_of_le_left
tsub_self
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.orderedSub
LE.le.lt_of_ne
degree_sPolynomial_le
AddEquiv.injective
Mathlib.Tactic.Contrapose.contraposeβ‚„
coeff_degree_eq_zero_iff
coeff_sPolynomial_sup_eq_zero
degree_sPolynomial_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
sPolynomial
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_def
LE.le.trans
degree_sub_le
sup_le_sup
degree_mul_le
degree_monomial
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.isOrderedAddMonoid
Finsupp.orderedSub
max_self
Mathlib.Tactic.Push.not_and_or_eq
sPolynomial_left_zero
degree_zero
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
sup_of_le_right
sPolynomial_right_zero
sup_of_le_left
degree_sPolynomial_lt_sup_degree πŸ“–mathematicalβ€”syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
sPolynomial
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
β€”degree_sPolynomial
degree_smul πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
degree
MvPolynomial
Algebra.toSMul
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
β€”degree_smul_of_isRegular
degree_smul_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
MvPolynomial
Algebra.toSMul
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
β€”MvPolynomial.smul_eq_C_mul
degree_mul_le
degree_C
zero_add
degree_smul_of_isRegular πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
degree
MvPolynomial
Algebra.toSMul
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
β€”degree_smul_of_mem_nonZeroDivisors
IsRegular.mem_nonZeroDivisors
degree_smul_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
degree
MvPolynomial
Algebra.toSMul
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
β€”smul_zero
degree_zero
AddEquiv.injective
le_antisymm
degree_smul_le
le_degree
MvPolynomial.smul_eq_C_mul
zero_add
degree_C
coeff_mul_of_degree_add
leadingCoeff_C
not_imp_not
mem_nonZeroDivisors_iff
leadingCoeff_ne_zero_iff
degree_sub_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”sub_eq_add_neg
degree_add_le
degree_neg
degree_sub_leadingTerm_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
leadingTerm
β€”le_trans
degree_sub_le
degree_leadingTerm
max_self
degree_sub_leadingTerm_lt_degree πŸ“–mathematicalβ€”syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
leadingTerm
β€”degree_zero
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
EquivLike.toEmbeddingLike
lt_of_le_of_ne
degree_sub_leadingTerm_le
MvPolynomial.coeff_sub
MvPolynomial.coeff_monomial
sub_self
MvPolynomial.mem_support_iff
degree_mem_support
degree_sub_leadingTerm_lt_iff πŸ“–mathematicalβ€”syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
leadingTerm
β€”not_lt_bot
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
degree_sub_leadingTerm_lt_degree
degree_sub_of_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
β€”sub_eq_add_neg
degree_add_of_lt
degree_neg
degree_subsingleton πŸ“–mathematicalβ€”degree
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
β€”Subsingleton.eq_zero
Unique.instSubsingleton
degree_zero
degree_sum_le πŸ“–mathematicalβ€”syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
Finset.sum
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finset.sup
Lattice.toSemilatticeSup
orderBot
β€”Finset.cons_induction_on
degree_zero
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
Finset.sup_empty
Finset.sum_cons
Finset.sup_cons
le_trans
degree_add_le
max_le_max
le_rfl
degree_zero πŸ“–mathematicalβ€”degree
MvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
Finsupp
Nat.instMulZeroClass
Finsupp.instZero
β€”Finset.sup_empty
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
eq_C_of_degree_eq_zero πŸ“–mathematicaldegree
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
leadingCoeff
β€”MvPolynomial.ext
MvPolynomial.coeff_C
coeff_eq_zero_of_lt
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
lt_iff_le_and_ne
EmbeddingLike.map_eq_zero_iff
EquivLike.toEmbeddingLike
bot_le
image_leadingTerm_insert_zero πŸ“–mathematicalβ€”Set.image
MvPolynomial
leadingTerm
Set
Set.instInsert
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”Set.ext
leadingTerm_zero
image_leadingTerm_sdiff_singleton_zero πŸ“–mathematicalβ€”Set.image
MvPolynomial
leadingTerm
Set
Set.instSDiff
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”Set.ext
isUnit_leadingCoeff πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
leadingCoeff
Semifield.toCommSemiring
β€”β€”
le_degree πŸ“–mathematicalFinsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finset
Finset.instMembership
MvPolynomial.support
syn
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
β€”AddEquiv.apply_symm_apply
Finset.le_sup
leadingCoeff_C πŸ“–mathematicalβ€”leadingCoeff
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
β€”degree_C
MvPolynomial.coeff_zero_C
leadingCoeff_X πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial.X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”leadingCoeff_monomial
leadingCoeff_add_of_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
leadingCoeff
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”degree_add_of_lt
MvPolynomial.coeff_add
coeff_eq_zero_of_lt
add_zero
leadingCoeff_eq_zero_iff πŸ“–mathematicalβ€”leadingCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial
MvPolynomial.commSemiring
β€”β€”
leadingCoeff_leadingTerm πŸ“–mathematicalβ€”leadingCoeff
leadingTerm
β€”leadingCoeff_monomial
leadingCoeff_monomial πŸ“–mathematicalβ€”leadingCoeff
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
β€”degree_monomial
MvPolynomial.monomial_zero
MvPolynomial.coeff_monomial
leadingCoeff_mul πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”MulZeroClass.zero_mul
leadingCoeff_zero
MulZeroClass.mul_zero
leadingCoeff.eq_1
degree_mul
coeff_mul_of_degree_add
leadingCoeff_mul_of_isRegular_left πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
leadingCoeff
MvPolynomial
MvPolynomial.commSemiring
β€”degree_mul_of_isRegular_left
coeff_mul_of_degree_add
leadingCoeff_mul_of_isRegular_right πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
leadingCoeff
MvPolynomial
MvPolynomial.commSemiring
β€”degree_mul_of_isRegular_right
coeff_mul_of_degree_add
leadingCoeff_mul_of_left_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPolynomial.commSemiring
β€”degree_mul_of_left_mem_nonZeroDivisors
coeff_mul_of_degree_add
leadingCoeff_mul_of_mul_leadingCoeff_ne_zero πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”leadingCoeff.eq_1
coeff_mul_of_degree_add
degree_mul_of_mul_leadingCoeff_ne_zero
leadingCoeff_mul_of_right_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPolynomial.commSemiring
β€”degree_mul_of_right_mem_nonZeroDivisors
coeff_mul_of_degree_add
leadingCoeff_ne_zero_iff πŸ“–β€”β€”β€”β€”not_imp_not
leadingCoeff_zero
leadingCoeff.eq_1
MvPolynomial.mem_support_iff
degree.eq_1
Finset.sup_mem_of_nonempty
MvPolynomial.support_nonempty
AddEquiv.symm_apply_apply
leadingCoeff_neg πŸ“–mathematicalβ€”leadingCoeff
CommRing.toCommSemiring
MvPolynomial
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
β€”degree_neg
MvPolynomial.coeff_neg
leadingCoeff_one πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”leadingCoeff_monomial
leadingCoeff_pow πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”leadingCoeff.eq_1
degree_pow
coeff_pow_nsmul_degree
leadingCoeff_pow_of_pow_leadingCoeff_ne_zero πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”leadingCoeff.eq_1
degree_pow_of_pow_leadingCoeff_ne_zero
coeff_pow_nsmul_degree
leadingCoeff_prod_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
leadingCoeff
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
β€”degree_prod_of_mem_nonZeroDivisors
coeff_prod_sum_degree
Finset.prod_congr
leadingCoeff_prod_of_regular πŸ“–mathematicalIsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
leadingCoeff
Finset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
β€”degree_prod_of_regular
coeff_prod_sum_degree
Finset.prod_congr
leadingCoeff_sub_of_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
leadingCoeff
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
β€”sub_eq_add_neg
leadingCoeff_add_of_lt
degree_neg
leadingCoeff_zero πŸ“–mathematicalβ€”leadingCoeff
MvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”Finset.sup_empty
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
leadingTerm_C πŸ“–mathematicalβ€”leadingTerm
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
β€”degree_C
leadingCoeff_C
leadingTerm_eq_zero_iff πŸ“–mathematicalβ€”leadingTerm
MvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”β€”
leadingTerm_leadingTerm πŸ“–mathematicalβ€”leadingTermβ€”degree_zero
leadingCoeff_zero
MvPolynomial.monomial_zero
degree_monomial
leadingCoeff_monomial
leadingTerm_monomial πŸ“–mathematicalβ€”leadingTerm
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
β€”MvPolynomial.monomial_zero
degree_zero
leadingCoeff_zero
degree_monomial
leadingCoeff_monomial
leadingTerm_zero πŸ“–mathematicalβ€”leadingTerm
MvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”leadingTerm_eq_zero_iff
monic_X πŸ“–mathematicalβ€”Monic
MvPolynomial.X
β€”monic_monomial_one
monic_X_add_C πŸ“–mathematicalβ€”Monic
CommRing.toCommSemiring
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
MvPolynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Monic.add_of_lt
monic_X
degree_C
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
degree_X
EquivLike.toEmbeddingLike
monic_X_sub_C πŸ“–mathematicalβ€”Monic
CommRing.toCommSemiring
MvPolynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
MvPolynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
β€”sub_eq_add_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
monic_X_add_C
monic_monomial πŸ“–mathematicalβ€”Monic
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Monic.eq_1
leadingCoeff_monomial
monic_monomial_one πŸ“–mathematicalβ€”Monic
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”leadingCoeff_monomial
monic_one πŸ“–mathematicalβ€”Monic
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”monic_monomial_one
ne_zero_of_degree_ne_zero πŸ“–β€”β€”β€”β€”degree_zero
notMem_support_of_degree_lt πŸ“–mathematicalsyn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
Finset
Finset.instMembership
MvPolynomial.support
β€”coeff_eq_zero_of_lt
sPolynomial_antisymm πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
neg_sub
sPolynomial_decomposition πŸ“–mathematicalDFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
syn
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
CommRing.toCommSemiring
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
leadingCoeff
MvPolynomial
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toSMul
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
sPolynomial
β€”Finset.induction_on
Finset.sum_congr
Finset.sum_const_zero
Zero.instNonempty
Finset.sum_insert
zero_add
sPolynomial_right_zero
smul_zero
sPolynomial_left_zero
ite_smul
zero_smul
Finset.sum_ite_eq'
add_zero
sPolynomial_self
add_eq_zero_iff_neg_eq'
AddEquiv.injective
degree_zero
MvPolynomial.coeff_sum
MvPolynomial.coeff_add
MvPolynomial.notMem_support_iff
notMem_support_of_degree_lt
add_comm
Finset.sum_sub_distrib
sub_eq_add_neg
Finset.sum_smul
Finset.sum_mul
neg_smul
neg_mul
IsUnit.mul_val_inv
one_smul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial.eq_1
mul_comm
tsub_self
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.orderedSub
smul_sub
IsUnit.val_inv_mul
leadingCoeff_zero
MulZeroClass.zero_mul
sub_self
tsub_zero
MulZeroClass.mul_zero
zero_tsub
MvPolynomial.monomial_zero
sPolynomial_decomposition' πŸ“–mathematicalDFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
syn
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
degree
Semifield.toCommSemiring
Field.toSemifield
MvPolynomial
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Field.toCommRing
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
CommRing.toCommSemiring
Algebra.toSMul
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
sPolynomial
β€”sPolynomial_decomposition
sPolynomial_def πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
degree
leadingCoeff
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Finsupp.ext
le_total
sup_of_le_right
sup_of_le_left
tsub_self
sPolynomial.eq_1
sup_comm
sPolynomial_leadingTerm_mul πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
leadingTerm
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
degree
leadingCoeff
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_monomial_mul
sPolynomial_leadingTerm_mul' πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
leadingTerm
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
degree
leadingCoeff
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_monomial_mul
degree_mul
Mathlib.Tactic.Push.not_and_or_eq
leadingTerm_zero
MulZeroClass.zero_mul
sPolynomial_left_zero
degree_zero
sup_of_le_right
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
leadingCoeff_zero
MvPolynomial.monomial_zero
sPolynomial_right_zero
sup_of_le_left
MulZeroClass.mul_zero
sPolynomial_left_zero πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
degree_zero
tsub_zero
Finsupp.orderedSub
MulZeroClass.mul_zero
zero_tsub
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
leadingCoeff_zero
MvPolynomial.monomial_zero
MulZeroClass.zero_mul
sub_self
sPolynomial_lt_of_degree_ne_zero_of_degree_eq πŸ“–mathematicaldegree
CommRing.toCommSemiring
syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
acm
EquivLike.toFunLike
AddEquiv.instEquivLike
toSyn
sPolynomial
β€”sup_of_le_left
degree_sPolynomial_lt_sup_degree
sPolynomial_monomial_mul πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
degree
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_def
Iff.not
MvPolynomial.monomial_eq_zero
degree_mul
mul_sub
mul_assoc
MvPolynomial.monomial_mul
leadingCoeff_mul
leadingCoeff_monomial
degree_monomial
mul_right_comm
mul_comm
tsub_add_tsub_cancel
CanonicallyOrderedAdd.toExistsAddOfLE
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.isOrderedAddMonoid
Finsupp.orderedSub
sup_le_sup
self_le_add_left
tsub_add_eq_add_tsub
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
le_sup_left
le_sup_right
add_comm
add_tsub_add_eq_tsub_right
Mathlib.Tactic.Push.not_and_or_eq
MvPolynomial.monomial_zero
MulZeroClass.zero_mul
degree_zero
sup_of_le_right
tsub_zero
MulZeroClass.mul_zero
tsub_self
leadingCoeff_zero
sub_self
sup_of_le_left
add_zero
sPolynomial_monomial_mul' πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
degree
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sPolynomial_monomial_mul
degree_mul
degree_monomial
Mathlib.Tactic.Push.not_and_or_eq
MvPolynomial.monomial_zero
MulZeroClass.zero_mul
sPolynomial_left_zero
degree_zero
sup_of_le_right
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sPolynomial_right_zero
sup_of_le_left
MulZeroClass.mul_zero
sPolynomial_mul_monomial πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Semiring.toModule
MvPolynomial.module
LinearMap.instFunLike
MvPolynomial.monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.tsub
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
SemilatticeSup.toMax
Finsupp.semilatticeSup
Lattice.toSemilatticeSup
Nat.instLattice
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
degree
β€”sPolynomial_monomial_mul
sPolynomial_right_zero πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”sPolynomial_antisymm
sPolynomial_left_zero
neg_zero
sPolynomial_self πŸ“–mathematicalβ€”sPolynomial
MvPolynomial
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”sub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub

MonomialOrder.Monic

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_of_lt πŸ“–mathematicalMonomialOrder.Monic
MonomialOrder.syn
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MonomialOrder.lo
DFunLike.coe
AddEquiv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
MonomialOrder.acm
EquivLike.toFunLike
AddEquiv.instEquivLike
MonomialOrder.toSyn
MonomialOrder.degree
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”MonomialOrder.leadingCoeff_add_of_lt
leadingCoeff_eq_one
coeff_degree πŸ“–mathematicalMonomialOrder.MonicMvPolynomial.coeff
MonomialOrder.degree
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”β€”
leadingCoeff_eq_one πŸ“–mathematicalMonomialOrder.MonicMonomialOrder.leadingCoeff
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”β€”
mul πŸ“–mathematicalMonomialOrder.MonicMvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
leadingCoeff_eq_one
one_mul
eq_1
MonomialOrder.leadingCoeff.eq_1
MonomialOrder.degree_mul_of_mul_leadingCoeff_ne_zero
one_ne_zero
NeZero.one
MonomialOrder.coeff_mul_of_degree_add
ne_zero πŸ“–β€”MonomialOrder.Monicβ€”β€”MonomialOrder.leadingCoeff_zero
NeZero.one
of_subsingleton πŸ“–mathematicalβ€”MonomialOrder.Monicβ€”Subsingleton.eq_one
pow πŸ“–mathematicalMonomialOrder.MonicMvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MvPolynomial.commSemiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
eq_1
MonomialOrder.leadingCoeff_pow_of_pow_leadingCoeff_ne_zero
leadingCoeff_eq_one
one_pow
one_ne_zero
NeZero.one
prod πŸ“–mathematicalMonomialOrder.MonicFinset.prod
MvPolynomial
CommSemiring.toCommMonoid
MvPolynomial.commSemiring
β€”eq_1
MonomialOrder.leadingCoeff_prod_of_regular
leadingCoeff_eq_one
isRegular_one
Finset.prod_eq_one

(root)

Definitions

NameCategoryTheorems
MonomialOrder πŸ“–CompDataβ€”

---

← Back to Index