| Name | Category | Theorems |
IsSymmetric 📖 | MathDef | 10 mathmath: esymm_isSymmetric, isSymmetric_esymmAlgHomMonomial, IsSymmetric.one, psum_isSymmetric, IsSymmetric.zero, msymm_isSymmetric, IsSymmetric.C, isSymmetric_rename, mem_symmetricSubalgebra, hsymm_isSymmetric
|
esymm 📖 | CompOp | 25 mathmath: esymm_isSymmetric, sum_antidiagonal_card_esymm_psum_eq_zero, esymmAlgHomMonomial_single, map_esymm, rename_esymm, supDegree_esymm, support_esymm', mul_esymm_eq_sum, monic_esymm, prod_X_add_C_coeff, esymmAlgHomMonomial_single_one, aeval_esymm_eq_multiset_esymm, prod_C_add_X_eq_sum_esymm, esymmAlgHom_apply, degrees_esymm, esymm_eq_sum_monomial, psum_eq_mul_esymm_sub_sum, esymm_eq_multiset_esymm, support_esymm'', esymm_zero, esymm_eq_sum_subtype, esymm_one, support_esymm, esymmPart_indiscrete, esymmAlgEquiv_symm_apply
|
esymmPart 📖 | CompOp | 2 mathmath: esymmPart_zero, esymmPart_indiscrete
|
hsymm 📖 | CompOp | 6 mathmath: hsymmPart_indiscrete, map_hsymm, hsymm_one, hsymm_zero, rename_hsymm, hsymm_isSymmetric
|
hsymmPart 📖 | CompOp | 2 mathmath: hsymmPart_indiscrete, hsymmPart_zero
|
msymm 📖 | CompOp | 4 mathmath: rename_msymm, msymm_zero, msymm_isSymmetric, msymm_one
|
psum 📖 | CompOp | 8 mathmath: sum_antidiagonal_card_esymm_psum_eq_zero, rename_psum, psum_isSymmetric, psumPart_indiscrete, psum_zero, mul_esymm_eq_sum, psum_one, psum_eq_mul_esymm_sub_sum
|
psumPart 📖 | CompOp | 2 mathmath: psumPart_indiscrete, psumPart_zero
|
renameSymmetricSubalgebra 📖 | CompOp | 3 mathmath: rename_esymmAlgHom, renameSymmetricSubalgebra_symm_apply_coe, renameSymmetricSubalgebra_apply_coe
|
symmetricSubalgebra 📖 | CompOp | 12 mathmath: rename_esymmAlgHom, esymmAlgHom_fin_surjective, renameSymmetricSubalgebra_symm_apply_coe, esymmAlgHom_fin_injective, esymmAlgHom_apply, mem_symmetricSubalgebra, esymmAlgHom_fin_bijective, esymmAlgEquiv_apply, esymmAlgHom_surjective, esymmAlgEquiv_symm_apply, esymmAlgHom_injective, renameSymmetricSubalgebra_apply_coe
|