Documentation Verification Report

FundamentalTheorem

πŸ“ Source: Mathlib/RingTheory/MvPolynomial/Symmetric/FundamentalTheorem.lean

Statistics

MetricCount
Definitionsaccumulate, invAccumulate, esymmAlgEquiv, esymmAlgHom, esymmAlgHomMonomial
5
Theoremsaccumulate_apply, accumulate_injective, accumulate_invAccumulate, accumulate_last, accumulate_rec, antitone_supDegree, esymmAlgEquiv_apply, esymmAlgEquiv_symm_apply, esymmAlgHomMonomial_add, esymmAlgHomMonomial_single, esymmAlgHomMonomial_single_one, esymmAlgHom_apply, esymmAlgHom_fin_bijective, esymmAlgHom_fin_injective, esymmAlgHom_fin_surjective, esymmAlgHom_injective, esymmAlgHom_surjective, esymmAlgHom_zero, isSymmetric_esymmAlgHomMonomial, leadingCoeff_esymmAlgHomMonomial, monic_esymm, rename_esymmAlgHom, supDegree_esymm, supDegree_esymmAlgHomMonomial
24
Total29

Fin

Definitions

NameCategoryTheorems
accumulate πŸ“–CompOp
7 mathmath: MvPolynomial.supDegree_esymmAlgHomMonomial, accumulate_invAccumulate, accumulate_rec, accumulate_apply, MvPolynomial.supDegree_esymm, accumulate_injective, accumulate_last
invAccumulate πŸ“–CompOp
1 mathmath: accumulate_invAccumulate

Theorems

NameKindAssumesProvesValidatesDepends On
accumulate_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
accumulate
Finset.sum
Nat.instAddCommMonoid
Finset.filter
Finset.univ
fintype
β€”β€”
accumulate_injective πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
accumulate
β€”lt_or_ge
add_right_cancel_iff
AddRightCancelSemigroup.toIsRightCancelAdd
LE.le.antisymm
LE.le.trans
LT.lt.nat_succ_le
LT.lt.trans_eq
accumulate_last
LT.lt.not_ge
LT.lt.trans_le
accumulate_invAccumulate πŸ“–mathematicalAntitone
PartialOrder.toPreorder
instPartialOrder
Nat.instPreorder
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
accumulate
invAccumulate
β€”LT.lt.trans_le
invAccumulate.eq_1
LT.lt.trans_eq
accumulate_last
LE.le.not_gt
Eq.not_gt
accumulate_last πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
accumulate
LT.lt.trans_eq
β€”LT.lt.trans_eq
accumulate_apply
Finset.sum_eq_single_of_mem
Finset.mem_filter
Finset.mem_univ
le_rfl
Eq.trans_le
LT.lt.nat_succ_le
LE.le.lt_of_ne
Finset.mem_filter_univ
accumulate_rec πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
accumulate
β€”Finset.sum_congr
Finset.ext
Finset.mem_erase
Finset.add_sum_erase
Finset.mem_filter
Finset.mem_univ
le_rfl

MvPolynomial

Definitions

NameCategoryTheorems
esymmAlgEquiv πŸ“–CompOp
2 mathmath: esymmAlgEquiv_apply, esymmAlgEquiv_symm_apply
esymmAlgHom πŸ“–CompOp
8 mathmath: rename_esymmAlgHom, esymmAlgHom_fin_surjective, esymmAlgHom_fin_injective, esymmAlgHom_apply, esymmAlgHom_fin_bijective, esymmAlgEquiv_apply, esymmAlgHom_surjective, esymmAlgHom_injective
esymmAlgHomMonomial πŸ“–CompOp
7 mathmath: isSymmetric_esymmAlgHomMonomial, supDegree_esymmAlgHomMonomial, esymmAlgHomMonomial_single, leadingCoeff_esymmAlgHomMonomial, esymmAlgHom_zero, esymmAlgHomMonomial_single_one, esymmAlgHomMonomial_add

Theorems

NameKindAssumesProvesValidatesDepends On
esymmAlgEquiv_apply πŸ“–mathematicalFintype.cardDFunLike.coe
AlgEquiv
MvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
Subalgebra.toSemiring
Subalgebra.algebra
AlgEquiv.instFunLike
esymmAlgEquiv
AlgHom
AlgHom.funLike
esymmAlgHom
β€”β€”
esymmAlgEquiv_symm_apply πŸ“–mathematicalFintype.cardDFunLike.coe
AlgEquiv
MvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
Subalgebra.toSemiring
Subalgebra.algebra
AlgEquiv.instFunLike
AlgEquiv.symm
esymmAlgEquiv
esymm
esymm_isSymmetric
X
β€”esymmAlgHom_injective
Eq.ge
esymm_isSymmetric
AlgEquiv.ofBijective_apply_symm_apply
aeval_X
esymmAlgHomMonomial_add πŸ“–mathematicalβ€”esymmAlgHomMonomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”esymmAlgHom_apply
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
monomial_mul
mul_one
esymmAlgHomMonomial_single πŸ“–mathematicalβ€”esymmAlgHomMonomial
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
DFunLike.coe
RingHom
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
esymm
β€”esymmAlgHomMonomial.eq_1
esymmAlgHom_apply
aeval_monomial
algebraMap_eq
Finsupp.prod_single_index
pow_zero
esymmAlgHomMonomial_single_one πŸ“–mathematicalβ€”esymmAlgHomMonomial
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
commSemiring
esymm
β€”esymmAlgHomMonomial_single
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
esymmAlgHom_apply πŸ“–mathematicalβ€”MvPolynomial
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
esymmAlgHom
aeval
esymm
β€”Subalgebra.mvPolynomial_aeval_coe
esymmAlgHom_fin_bijective πŸ“–mathematicalβ€”Function.Bijective
MvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
esymmAlgHom
Fin.fintype
β€”esymmAlgHom_fin_injective
le_rfl
AlgHom.mem_range
eq_or_ne
Subalgebra.zero_mem
WellFoundedLT.induction
Finsupp.Lex.wellFoundedLT
instTrichotomousLt
IsWellOrder.toIsWellFounded
isWellOrder_gt
Finite.to_wellFoundedGT
Finite.of_fintype
Nat.instCanonicallyOrderedAdd
instWellFoundedLTNat
DFunLike.ext'_iff
supDegree_esymmAlgHomMonomial
Zero.instNonempty
AddMonoidAlgebra.leadingCoeff_eq_zero
Equiv.injective
Fin.accumulate_invAccumulate
IsSymmetric.antitone_supDegree
AlgHom.mem_range_self
AddMonoidAlgebra.supDegree_sub_lt_of_leadingCoeff_eq
leadingCoeff_esymmAlgHomMonomial
Subalgebra.sub_mem
isSymmetric_esymmAlgHomMonomial
sub_add_cancel
Subalgebra.add_mem
sub_ne_zero
esymmAlgHom_fin_injective πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
esymmAlgHom
Fin.fintype
β€”injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Function.mtr
as_sum
map_sum
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
Subalgebra.coe_eq_zero
AddSubmonoidClass.coe_finset_sum
AddMonoidAlgebra.sum_ne_zero_of_injOn_supDegree
Nat.instCanonicallyOrderedAdd
support_nonempty
esymmAlgHomMonomial.eq_1
Zero.instNonempty
AddMonoidAlgebra.leadingCoeff_eq_zero
Equiv.injective
leadingCoeff_esymmAlgHomMonomial
mem_support_iff
DFunLike.ext'
Fin.accumulate_injective
supDegree_esymmAlgHomMonomial
Finset.mem_coe
DFunLike.ext'_iff
esymmAlgHom_fin_surjective πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
esymmAlgHom
Fin.fintype
β€”esymmAlgHom_fin_bijective
AlgHom.mem_range
induction_on
algebraMap_eq
AlgHom.commutes
Subalgebra.algebraMap_mem
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Subalgebra.add_mem
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Subalgebra.mul_mem
LT.lt.trans_le
aeval_X
esymmAlgHom_injective πŸ“–mathematicalFintype.cardMvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
esymmAlgHom
β€”rename_esymmAlgHom
AlgHom.coe_comp
AlgEquiv.injective
esymmAlgHom_fin_injective
esymmAlgHom_surjective πŸ“–mathematicalFintype.cardMvPolynomial
CommRing.toCommSemiring
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
AlgHom.funLike
esymmAlgHom
β€”rename_esymmAlgHom
AlgHom.coe_comp
AlgEquiv.surjective
esymmAlgHom_fin_surjective
esymmAlgHom_zero πŸ“–mathematicalβ€”esymmAlgHomMonomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
C
β€”esymmAlgHomMonomial.eq_1
monomial_zero'
esymmAlgHom_apply
aeval_C
algebraMap_eq
isSymmetric_esymmAlgHomMonomial πŸ“–mathematicalβ€”IsSymmetric
esymmAlgHomMonomial
β€”β€”
leadingCoeff_esymmAlgHomMonomial πŸ“–mathematicalβ€”AddMonoidAlgebra.leadingCoeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Lex
CommSemiring.toSemiring
Finsupp.Lex.linearOrder
Fin.instLinearOrder
Nat.instLinearOrder
Finsupp.Lex.orderBot
Nat.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instCanonicallyOrderedAdd
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Finsupp.instInhabited
esymmAlgHomMonomial
Fin.fintype
β€”Finsupp.inductionβ‚‚
Nat.instCanonicallyOrderedAdd
esymmAlgHom_zero
leadingCoeff_toLex_C
esymmAlgHomMonomial_add
esymmAlgHomMonomial_single_one
Zero.instNonempty
AddMonoidAlgebra.Monic.leadingCoeff_mul_eq_left
Finsupp.Lex.addLeftStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.Lex.addRightStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
AddMonoidAlgebra.Monic.pow
toLex_add
Equiv.injective
monic_esymm
LT.lt.trans_le
monic_esymm πŸ“–mathematicalβ€”AddMonoidAlgebra.Monic
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Lex
CommSemiring.toSemiring
Finsupp.Lex.linearOrder
Fin.instLinearOrder
Nat.instLinearOrder
Finsupp.Lex.orderBot
Nat.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instCanonicallyOrderedAdd
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Finsupp.instInhabited
esymm
Fin.fintype
β€”Nat.instCanonicallyOrderedAdd
esymm_zero
AddMonoidAlgebra.monic_one
Equiv.injective
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
rename_esymmAlgHom πŸ“–mathematicalβ€”AlgHom.comp
MvPolynomial
Subalgebra
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
SetLike.instMembership
Subalgebra.instSetLike
symmetricSubalgebra
Subalgebra.toSemiring
Subalgebra.algebra
AlgEquiv.toAlgHom
renameSymmetricSubalgebra
esymmAlgHom
β€”algHom_ext
aeval_X
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
rename_esymm
supDegree_esymm πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
AddMonoidAlgebra.supDegree
CommSemiring.toSemiring
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finsupp.Lex.linearOrder
Fin.instLinearOrder
Nat.instLinearOrder
Finsupp.Lex.orderBot
Nat.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Nat.instCanonicallyOrderedAdd
toLex
esymm
Fin.fintype
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
Fin.accumulate
Finsupp.single
β€”Nat.instCanonicallyOrderedAdd
ofLex_toLex
Finsupp.indicator_apply
Finset.sum_congr
Finsupp.single_apply
Finset.sum_ite_eq
supDegree_esymmAlgHomMonomial πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
AddMonoidAlgebra.supDegree
CommSemiring.toSemiring
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finsupp.Lex.linearOrder
Fin.instLinearOrder
Nat.instLinearOrder
Finsupp.Lex.orderBot
Nat.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
Nat.instCanonicallyOrderedAdd
toLex
esymmAlgHomMonomial
Fin.fintype
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
Fin.accumulate
β€”Finsupp.inductionβ‚‚
Nat.instCanonicallyOrderedAdd
esymmAlgHom_zero
supDegree_toLex_C
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
LT.lt.trans_le
esymmAlgHomMonomial_add
esymmAlgHomMonomial_single_one
AddMonoidAlgebra.Monic.supDegree_mul_of_ne_zero_left
Finsupp.Lex.addLeftStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.Lex.addRightStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Equiv.injective
toLex_add
AddMonoidAlgebra.Monic.pow
monic_esymm
Zero.instNonempty
AddMonoidAlgebra.leadingCoeff_eq_zero
leadingCoeff_esymmAlgHomMonomial
ofLex_add
Finsupp.coe_add
map_add
AddMonoidHomClass.toAddHomClass
AddMonoidAlgebra.Monic.supDegree_pow
nontrivial_of_ne
ofLex_smul
Finsupp.coe_smul
supDegree_esymm
map_nsmul
Finsupp.smul_single
nsmul_one
Nat.cast_id

MvPolynomial.IsSymmetric

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_supDegree πŸ“–mathematicalMvPolynomial.IsSymmetricAntitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instPreorder
DFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
AddMonoidAlgebra.supDegree
CommSemiring.toSemiring
Lattice.toSemilatticeSup
Finsupp.Lex.linearOrder
Nat.instLinearOrder
Finsupp.Lex.orderBot
Nat.instAddCommMonoid
Nat.instCanonicallyOrderedAdd
toLex
β€”Nat.instCanonicallyOrderedAdd
eq_or_ne
AddMonoidAlgebra.supDegree_zero
Finsupp.bot_eq_zero
Pi.zero_mono
Antitone.eq_1
Mathlib.Tactic.Push.not_forall_eq
LE.le.not_gt
Finset.le_sup
MvPolynomial.mem_support_iff
MvPolynomial.coeff_rename_mapDomain
Equiv.injective
MvPolynomial.leadingCoeff_toLex
Zero.instNonempty
AddMonoidAlgebra.leadingCoeff_eq_zero
Equiv.swap_apply_of_ne_of_ne
LT.lt.ne
LT.lt.trans_le
Finsupp.mapDomain_apply
AddMonoidAlgebra.supDegree.eq_1
LT.lt.trans_eq
Finsupp.mapDomain_equiv_apply
Equiv.swap_apply_left

---

← Back to Index