Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/MvPowerSeries/Basic.lean

Statistics

MetricCount
DefinitionscoeToMvPowerSeries, algHom, ringHom, toMvPowerSeries, MvPowerSeries, C, X, algebraMvPolynomial, algebraMvPowerSeries, coeff, constantCoeff, instAddCommGroup, instAddCommMonoid, instAddGroup, instAddMonoid, instAddMonoidWithOne, instAlgebra, instCommRing, instCommSemiring, instInhabited, instModule, instMul, instOne, instRing, instSemiring, instZero, map, mapAlgHom, monomial, toSubring
30
TheoremsalgHom_apply, ringHom_apply, coe_C, coe_X, coe_add, coe_def, coe_eq_one_iff, coe_eq_zero_iff, coe_inj, coe_injective, coe_monomial, coe_mul, coe_one, coe_pow, coe_smul, coe_zero, coeff_coe, X_def, X_dvd_iff, X_inj, X_mul, X_pow_dvd_iff, X_pow_eq, X_pow_mul, add_mul, algebraMap_apply, algebraMap_apply', algebraMap_apply'', c_eq_algebraMap, coeff_C, coeff_C_mul, coeff_X, coeff_X_pow, coeff_add_monomial_mul, coeff_add_mul_monomial, coeff_apply, coeff_comp_monomial, coeff_eq_zero_of_constantCoeff_nilpotent, coeff_index_single_X, coeff_index_single_self_X, coeff_map, coeff_monomial, coeff_monomial_mul, coeff_monomial_ne, coeff_monomial_same, coeff_mul, coeff_mul_C, coeff_mul_monomial, coeff_one, coeff_pow, coeff_prod, coeff_smul, coeff_toSubring, coeff_zero, coeff_zero_C, coeff_zero_X, coeff_zero_X_mul, coeff_zero_eq_constantCoeff, coeff_zero_eq_constantCoeff_apply, coeff_zero_mul_X, coeff_zero_one, commute_X, commute_X_pow, commute_monomial, constantCoeff_C, constantCoeff_X, constantCoeff_comp_C, constantCoeff_map, constantCoeff_one, constantCoeff_smul, constantCoeff_toSubring, constantCoeff_zero, eq_of_coeff_monomial_ne_zero, eq_zero_iff_forall_coeff_zero, ext, ext_iff, instIsScalarTower, instNontrivial, instNontrivialSubalgebraOfNonempty, isUnit_constantCoeff, mapAlgHom_apply, map_C, map_X, map_comp, map_eq_zero, map_id, map_map, map_monomial, map_toSubring, monomial_def, monomial_eq, monomial_eq', monomial_mul_monomial, monomial_one_eq, monomial_pow, monomial_smul_const, monomial_smul_eq, monomial_zero_eq_C, monomial_zero_eq_C_apply, monomial_zero_one, mul_add, mul_assoc, mul_one, mul_zero, ne_zero_iff_exists_coeff_ne_zero, one_mul, prod_monomial, prod_smul_X_eq_smul_monomial_one, smul_eq_C_mul, zero_mul
110
Total140

MvPolynomial

Definitions

NameCategoryTheorems
coeToMvPowerSeries πŸ“–CompOpβ€”
toMvPowerSeries πŸ“–CompOp
35 mathmath: MvPowerSeries.WithPiTopology.tendsto_trunc_atTop, coe_C, MvPowerSeries.trunc'_trunc', MvPowerSeries.evalβ‚‚_coe, MvPowerSeries.trunc'_expand_trunc', Polynomial.toPowerSeries_toMvPowerSeries, MvPowerSeries.evalβ‚‚Hom_eq_extend, Polynomial.pUnitAlgEquiv_symm_toPowerSeries, toMvPowerSeries_isUniformInducing, coe_one, coe_eq_one_iff, coe_eq_zero_iff, MvPowerSeries.trunc'_trunc'_pow, coe_monomial, coe_X, coe_zero, MvPowerSeries.expand_eq_expand, MvPowerSeries.aeval_coe, toMvPowerSeries_isDenseInducing, coeff_coe, coe_def, coe_add, MvPowerSeries.substAlgHom_coe, coe_pow, coeToMvPowerSeries.algHom_apply, coe_smul, MvPowerSeries.WithPiTopology.denseRange_toMvPowerSeries, MvPowerSeries.algebraMap_apply', toMvPowerSeries_pUnitAlgEquiv, coeToMvPowerSeries.ringHom_apply, MvPowerSeries.WithPiTopology.tendsto_trunc'_atTop, coe_injective, MvPowerSeries.subst_coe, coe_mul, coe_inj

Theorems

NameKindAssumesProvesValidatesDepends On
coe_C πŸ“–mathematicalβ€”toMvPowerSeries
DFunLike.coe
RingHom
MvPolynomial
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
C
MvPowerSeries
MvPowerSeries.instSemiring
MvPowerSeries.C
β€”coe_monomial
coe_X πŸ“–mathematicalβ€”toMvPowerSeries
X
MvPowerSeries.X
CommSemiring.toSemiring
β€”coe_monomial
coe_add πŸ“–mathematicalβ€”toMvPowerSeries
MvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
MvPowerSeries
MvPowerSeries.instSemiring
β€”β€”
coe_def πŸ“–mathematicalβ€”toMvPowerSeries
coeff
β€”β€”
coe_eq_one_iff πŸ“–mathematicalβ€”toMvPowerSeries
MvPowerSeries
MvPowerSeries.instOne
CommSemiring.toSemiring
MvPolynomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
commSemiring
β€”coe_one
coe_eq_zero_iff πŸ“–mathematicalβ€”toMvPowerSeries
MvPowerSeries
MvPowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial
commSemiring
β€”coe_zero
coe_inj πŸ“–mathematicalβ€”toMvPowerSeriesβ€”coe_injective
coe_injective πŸ“–mathematicalβ€”MvPolynomial
MvPowerSeries
toMvPowerSeries
β€”ext
coe_monomial πŸ“–mathematicalβ€”toMvPowerSeries
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
commSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
MvPowerSeries
MvPowerSeries.instAddCommMonoid
MvPowerSeries.instModule
MvPowerSeries.monomial
β€”MvPowerSeries.ext
coeff_coe
coeff_monomial
MvPowerSeries.coeff_monomial
coe_mul πŸ“–mathematicalβ€”toMvPowerSeries
MvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
MvPowerSeries
MvPowerSeries.instMul
β€”MvPowerSeries.ext
coeff_mul
MvPowerSeries.coeff_mul
Finset.sum_congr
coe_one πŸ“–mathematicalβ€”toMvPowerSeries
MvPolynomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
MvPowerSeries
MvPowerSeries.instOne
β€”coe_monomial
coe_pow πŸ“–mathematicalβ€”toMvPowerSeries
MvPolynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
commSemiring
MvPowerSeries
MvPowerSeries.instSemiring
β€”RingHom.map_pow
coe_smul πŸ“–mathematicalβ€”toMvPowerSeries
MvPolynomial
Algebra.toSMul
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
MvPowerSeries
MvPowerSeries.instSemiring
MvPowerSeries.instAlgebra
β€”β€”
coe_zero πŸ“–mathematicalβ€”toMvPowerSeries
MvPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
MvPowerSeries
MvPowerSeries.instZero
β€”β€”
coeff_coe πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
toMvPowerSeries
coeff
β€”β€”

MvPolynomial.coeToMvPowerSeries

Definitions

NameCategoryTheorems
algHom πŸ“–CompOp
1 mathmath: algHom_apply
ringHom πŸ“–CompOp
1 mathmath: ringHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPolynomial
MvPowerSeries
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPowerSeries.instSemiring
MvPolynomial.algebra
Algebra.id
MvPowerSeries.instAlgebra
AlgHom.funLike
algHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MvPowerSeries.map
algebraMap
MvPolynomial.toMvPowerSeries
β€”β€”
ringHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
MvPowerSeries
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPowerSeries.instSemiring
RingHom.instFunLike
ringHom
MvPolynomial.toMvPowerSeries
β€”β€”

MvPowerSeries

Definitions

NameCategoryTheorems
C πŸ“–CompOp
25 mathmath: MvPolynomial.coe_C, smul_eq_C_mul, trunc_C, constantCoeff_C, monomial_zero_eq_C, constantCoeff_comp_C, c_eq_algebraMap, C_inv, monomial_zero_eq_C_apply, coeff_C_mul, rescale_zero, coeff_zero_C, coeff_C, algebraMap_apply, evalβ‚‚_C, trunc_C_mul, map_C, rescale_zero_apply, monomial_smul_eq, monomial_eq', coeff_mul_C, expand_C, trunc'_C, trunc'_C_mul, WithPiTopology.continuous_C
X πŸ“–CompOp
42 mathmath: coeff_X_pow, X_pow_mul, evalβ‚‚_X, commute_X_pow, X_pow_eq, map_algebraMap_eq_subst_X, substAlgHom_X, coeff_X, X_pow_dvd_iff, coeff_index_single_X, X_def, MvPolynomial.coe_X, commute_X, coeff_index_single_self_X, coeff_zero_mul_X, PowerSeries.HasSubst.X, HasSubst.X_pow, X_inj, X_mul, coeff_zero_X_mul, subst_X, X_dvd_iff, rescale_eq_subst, constantCoeff_X, HasSubst.smul_X, HasEval.X, expand_X, X_inv, coeff_zero_X, HasSubst.X, monomial_one_eq, monomial_eq, X_mem_nonzeroDivisors, WithPiTopology.variables_tendsto_zero, map_X, monomial_smul_const, subst_self, PowerSeries.HasSubst.smul_X, monomial_smul_eq, aeval_unique, monomial_eq', prod_smul_X_eq_smul_monomial_one
algebraMvPolynomial πŸ“–CompOp
1 mathmath: algebraMap_apply'
algebraMvPowerSeries πŸ“–CompOp
1 mathmath: algebraMap_apply''
coeff πŸ“–CompOp
90 mathmath: coeff_zero_eq_constantCoeff_apply, hasSubst_def, coeff_zero_eq_constantCoeff, coeff_zero, coeff_mul_monomial, coeff_pow, constantCoeff_subst, coeff_monomial_mul, coeff_X_pow, coeff_mul_right_one_sub_of_lt_weightedOrder, PowerSeries.coeff_subst, coeff_eq_zero_of_constantCoeff_nilpotent, coeff_X, coeff_monomial_same, hasSum_aeval, X_pow_dvd_iff, coeff_mul_prod_one_sub_of_lt_order, coeff_index_single_X, LinearTopology.mem_basis_iff, coeff_of_lt_order, ext_iff, WithPiTopology.continuous_coeff, le_lexOrder_iff, coeff_index_single_self_X, WithPiTopology.as_tsum, WithPiTopology.uniformContinuous_coeff, coeff_inv, coeff_homogeneousComponent, WithPiTopology.hasSum_iff_hasSum_coeff, coeff_subst, HasSubst.coeff_zero, coeff_one, coeff_mul_right_one_sub_of_lt_order, coeff_expand_smul, evalβ‚‚_eq_tsum, le_weightedOrder_subst, coeff_comp_monomial, MvPolynomial.coeff_coe, coeff_trunc', coeff_zero_mul_X, coeff_inv_aux, coeff_weightedHomogeneousComponent, coeff_apply, coeff_trunc, eq_zero_iff_forall_coeff_eq_zero_and, coeff_truncFun', coeff_prod, coeff_C_mul, coeff_zero_one, PowerSeries.coeff_def, coeff_add_mul_monomial, coeff_zero_X_mul, coeff_zero_iff, coeff_mul_left_one_sub_of_lt_weightedOrder, weightedOrder_eq_nat, coeff_rescale, WithPiTopology.hasSum_of_monomials_self, eq_zero_iff_forall_coeff_zero, coeff_truncFun, HahnSeries.coeff_toMvPowerSeries_symm, coeff_expand_of_not_dvd, coeff_zero_C, coeff_monomial, X_dvd_iff, coeff_C, WithPiTopology.summable_iff_summable_coeff, coeff_invOfUnit, coeff_map, coeff_mul_eq_coeff_trunc'_mul_trunc', coeff_smul, coeff_zero_X, HahnSeries.coeff_toMvPowerSeries, PowerSeries.coeff_subst_finite, aeval_eq_sum, coeff_monomial_ne, coeff_subst_finite, order_eq_nat, IsWeightedHomogeneous.coeff_eq_zero, coeff_mul_left_one_sub_of_lt_order, WithPiTopology.tendsto_iff_coeff_tendsto, hasSum_evalβ‚‚, IsHomogeneous.coeff_eq_zero, coeff_eq_zero_of_lt_lexOrder, coeff_mul_of_add_lexOrder, coeff_eq_zero_of_lt_weightedOrder, coeff_mul_C, coeff_mul, coeff_mul_prod_one_sub_of_lt_weightedOrder, coeff_add_monomial_mul, commute_monomial
constantCoeff πŸ“–CompOp
29 mathmath: coeff_zero_eq_constantCoeff_apply, hasSubst_def, coeff_zero_eq_constantCoeff, PowerSeries.constantCoeff_subst, constantCoeff_subst, WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, isUnit_iff_constantCoeff, LinearTopology.isTopologicallyNilpotent_iff_constantCoeff, one_le_order_iff_constCoeff_eq_zero, constantCoeff_invOfUnit, constantCoeff_inv, constantCoeff_C, coeff_inv, constantCoeff_comp_C, constantCoeff_smul, HasSubst.const_coeff, constantCoeff_zero, constantCoeff_toSubring, rescale_zero, isUnit_constantCoeff, inv_eq_zero, constantCoeff_one, order_ne_zero_iff_constCoeff_eq_zero, constantCoeff_map, constantCoeff_X, constantCoeff_expand, invOfUnit_eq, rescale_zero_apply, WithPiTopology.continuous_constantCoeff
instAddCommGroup πŸ“–CompOp
4 mathmath: LinearTopology.instIsLinearTopologyMulOpposite, LinearTopology.instIsLinearTopologyOfMulOpposite, weightedOrder_neg, order_neg
instAddCommMonoid πŸ“–CompOp
138 mathmath: coeff_zero_eq_constantCoeff_apply, hasSubst_def, coeff_zero_eq_constantCoeff, coeff_zero, weightedOrder_monomial, coeff_mul_monomial, coeff_pow, constantCoeff_subst, coeff_monomial_mul, coeff_X_pow, X_pow_eq, WithPiTopology.summable_of_tendsto_order_atTop_nhds_top, monomial_mem_nonzeroDivisors, coeff_mul_right_one_sub_of_lt_weightedOrder, monomial_mem_nonzeroDivisorsLeft, smul_eq_C_mul, PowerSeries.coeff_subst, coeff_eq_zero_of_constantCoeff_nilpotent, coeff_X, coeff_monomial_same, hasSum_aeval, weightedOrder_monomial_of_ne_zero, X_pow_dvd_iff, coeff_mul_prod_one_sub_of_lt_order, coeff_index_single_X, LinearTopology.mem_basis_iff, subst_monomial, coeff_of_lt_order, MvPolynomial.coe_monomial, X_def, ext_iff, WithPiTopology.continuous_coeff, le_lexOrder_iff, monomial_mem_nonzeroDivisorsRight, coeff_index_single_self_X, WithPiTopology.as_tsum, WithPiTopology.uniformContinuous_coeff, monomial_zero_eq_C, coeff_inv, coeff_homogeneousComponent, weightedHomogeneousComponent_of_lt_weightedOrder_eq_zero, WithPiTopology.hasSum_iff_hasSum_coeff, coeff_subst, constantCoeff_smul, HasSubst.coeff_zero, coeff_one, WithPiTopology.summable_pow_of_constantCoeff_eq_zero, coeff_mul_right_one_sub_of_lt_order, coeff_expand_smul, le_weightedOrder_smul, evalβ‚‚_eq_tsum, homogeneousComponent_of_lt_order_eq_zero, le_weightedOrder_subst, monomial_zero_eq_C_apply, coeff_comp_monomial, isHomogeneous_iff_eq_homogeneousComponent, MvPolynomial.coeff_coe, coeff_trunc', coeff_zero_mul_X, coeff_inv_aux, WithPiTopology.one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, coeff_weightedHomogeneousComponent, coeff_apply, coeff_trunc, eq_zero_iff_forall_coeff_eq_zero_and, coeff_truncFun', WithPiTopology.summable_prod_of_tendsto_weightedOrder_atTop_nhds_top, coeff_prod, coeff_C_mul, weightedHomogeneousComponent_mul_of_le_weightedOrder, coeff_zero_one, add_mul, coeff_add_mul_monomial, monomial_pow, WithPiTopology.tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, coeff_zero_X_mul, map_monomial, le_order_smul, coeff_zero_iff, coeff_mul_left_one_sub_of_lt_weightedOrder, weightedOrder_eq_nat, expand_monomial, coeff_rescale, WithPiTopology.hasSum_of_monomials_self, eq_zero_iff_forall_coeff_zero, coeff_truncFun, HahnSeries.coeff_toMvPowerSeries_symm, isWeightedHomogeneous_weightedHomogeneousComponent, coeff_expand_of_not_dvd, coeff_zero_C, coeff_monomial, X_dvd_iff, coeff_C, homogeneousComponent_mul_of_le_order, WithPiTopology.summable_prod_of_tendsto_order_atTop_nhds_top, WithPiTopology.summable_iff_summable_coeff, instIsScalarTower, coeff_invOfUnit, coeff_map, coeff_mul_eq_coeff_trunc'_mul_trunc', coeff_smul, coeff_zero_X, HahnSeries.coeff_toMvPowerSeries, order_monomial, substAlgHom_monomial, PowerSeries.coeff_subst_finite, isHomogeneous_homogeneousComponent, aeval_eq_sum, monomial_zero_one, monomial_one_eq, monomial_eq, coeff_monomial_ne, coeff_subst_finite, order_eq_nat, IsWeightedHomogeneous.coeff_eq_zero, coeff_mul_left_one_sub_of_lt_order, monomial_mul_monomial, mul_add, WithPiTopology.tendsto_iff_coeff_tendsto, isWeightedHomogeneous_iff_eq_weightedHomogeneousComponent, monomial_smul_const, hasSum_evalβ‚‚, PowerSeries.HasSubst.monomial, monomial_smul_eq, order_monomial_of_ne_zero, IsHomogeneous.coeff_eq_zero, coeff_eq_zero_of_lt_lexOrder, coeff_mul_of_add_lexOrder, coeff_eq_zero_of_lt_weightedOrder, monomial_eq', coeff_mul_C, coeff_mul, coeff_mul_prod_one_sub_of_lt_weightedOrder, WithPiTopology.summable_of_tendsto_weightedOrder_atTop_nhds_top, coeff_add_monomial_mul, prod_monomial, prod_smul_X_eq_smul_monomial_one, commute_monomial
instAddGroup πŸ“–CompOp
9 mathmath: coeff_mul_right_one_sub_of_lt_weightedOrder, coeff_mul_prod_one_sub_of_lt_order, coeff_mul_right_one_sub_of_lt_order, WithPiTopology.instIsUniformAddGroup, WithPiTopology.one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, WithPiTopology.tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, coeff_mul_left_one_sub_of_lt_weightedOrder, coeff_mul_left_one_sub_of_lt_order, coeff_mul_prod_one_sub_of_lt_weightedOrder
instAddMonoid πŸ“–CompOp
26 mathmath: WithPiTopology.tendsto_trunc_atTop, eq_iff_frequently_trunc'_eq, trunc'_trunc', trunc'_expand_trunc', ext_trunc', smul_eq_C_mul, trunc_C, trunc'_trunc'_pow, trunc_one, constantCoeff_smul, le_weightedOrder_smul, trunc'_expand, trunc_map, coeff_trunc', coeff_trunc, le_order_smul, totalDegree_trunc', instIsScalarTower, coeff_mul_eq_coeff_trunc'_mul_trunc', WithPiTopology.tendsto_trunc'_atTop, coeff_smul, trunc'_one, trunc_C_mul, trunc'_map, trunc'_C, trunc'_C_mul
instAddMonoidWithOne πŸ“–CompOp
1 mathmath: PowerSeries.derivative_pow
instAlgebra πŸ“–CompOp
71 mathmath: support_expand, subst_eq_evalβ‚‚, PowerSeries.expand_subst, mapAlgHom_apply, PowerSeries.HasSubst.smul', substAlgHom_X, continuous_aeval, coe_substAlgHom, expand_mul, expand_substAlgHom, substAlgHom_eq_aeval, hasSum_aeval, comp_aeval, subst_monomial, WithPiTopology.instContinuousSMul, PowerSeries.substAlgHom_X, expand_one_apply, PowerSeries.substAlgHom_comp_substAlgHom, HasSubst.comp, rescaleAlgHom_one, c_eq_algebraMap, expand_eq_expand, substAlgHom_comp_substAlgHom_apply, rescaleAlgHom_mul, expand_one, coeff_expand_smul, aeval_coe, trunc'_expand, instNontrivialSubalgebraOfNonempty, expand_subst, substAlgHom_coe, rescale_homogeneous_eq_smul, expand_comp_substAlgHom, PowerSeries.subst_coe, MvPolynomial.coeToMvPowerSeries.algHom_apply, expand_monomial, order_expand, map_iterateFrobenius_expand, MvPolynomial.coe_smul, coeff_expand_of_not_dvd, rescaleAlgHom_apply, rescale_eq_subst, coe_aeval, HasSubst.smul_X, map_frobenius_expand, expand_X, map_expand, PowerSeries.HasSubst.comp, constantCoeff_expand, substAlgHom_monomial, algebraMap_apply, aeval_eq_sum, IsNilpotent_subst, monomial_eq, PowerSeries.substAlgHom_eq_aeval, PowerSeries.substAlgHom_coe, subst_smul, support_expand_subset, PowerSeries.subst_smul, PowerSeries.substAlgHom_comp_substAlgHom_apply, monomial_smul_const, expand_mul_eq_comp, PowerSeries.HasSubst.smul_X, subst_coe, smul_inv, substAlgHom_apply, substAlgHom_comp_substAlgHom, HasSubst.expand, PowerSeries.coe_substAlgHom, expand_C, prod_smul_X_eq_smul_monomial_one
instCommRing πŸ“–CompOp
23 mathmath: subst_eq_evalβ‚‚, constantCoeff_subst, subst_add, substAlgHom_eq_aeval, coeff_mul_prod_one_sub_of_lt_order, subst_monomial, coeff_subst, comp_subst_apply, hasSubst_iff_hasEval_of_discreteTopology, PowerSeries.subst_add, PowerSeries.HasSubst.add, HasSubst.add, PowerSeries.HasSubst.hasEval, HasEval.X, substAlgHom_monomial, comp_subst, PowerSeries.substAlgHom_eq_aeval, coeff_subst_finite, HasSubst.hasEval, comp_substAlgHom, PowerSeries.hasSubst_iff_hasEval_of_discreteTopology, aeval_unique, coeff_mul_prod_one_sub_of_lt_weightedOrder
instCommSemiring πŸ“–CompOp
21 mathmath: le_order_prod, le_weightedOrder_prod, WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, WithPiTopology.summable_prod_of_tendsto_weightedOrder_atTop_nhds_top, coeff_prod, substAlgHom_coe, algebraMap_apply'', HasSubst.smul, WithPiTopology.summable_prod_of_tendsto_order_atTop_nhds_top, monomial_one_eq, order_prod, monomial_eq, PowerSeries.HasSubst.smul, monomial_smul_const, monomial_smul_eq, subst_coe, weightedOrder_prod, monomial_eq', prod_monomial, prod_smul_X_eq_smul_monomial_one, WithPiTopology.multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOp
129 mathmath: coeff_zero_eq_constantCoeff_apply, hasSubst_def, coeff_zero_eq_constantCoeff, coeff_zero, weightedOrder_monomial, coeff_mul_monomial, coeff_pow, constantCoeff_subst, coeff_monomial_mul, coeff_X_pow, X_pow_eq, monomial_mem_nonzeroDivisors, coeff_mul_right_one_sub_of_lt_weightedOrder, monomial_mem_nonzeroDivisorsLeft, smul_eq_C_mul, PowerSeries.coeff_subst, coeff_eq_zero_of_constantCoeff_nilpotent, coeff_X, coeff_monomial_same, hasSum_aeval, weightedOrder_monomial_of_ne_zero, X_pow_dvd_iff, coeff_mul_prod_one_sub_of_lt_order, coeff_index_single_X, LinearTopology.mem_basis_iff, subst_monomial, coeff_of_lt_order, MvPolynomial.coe_monomial, X_def, ext_iff, WithPiTopology.continuous_coeff, le_lexOrder_iff, monomial_mem_nonzeroDivisorsRight, coeff_index_single_self_X, WithPiTopology.as_tsum, WithPiTopology.uniformContinuous_coeff, monomial_zero_eq_C, coeff_inv, coeff_homogeneousComponent, weightedHomogeneousComponent_of_lt_weightedOrder_eq_zero, WithPiTopology.hasSum_iff_hasSum_coeff, coeff_subst, constantCoeff_smul, HasSubst.coeff_zero, coeff_one, coeff_mul_right_one_sub_of_lt_order, coeff_expand_smul, le_weightedOrder_smul, evalβ‚‚_eq_tsum, homogeneousComponent_of_lt_order_eq_zero, le_weightedOrder_subst, monomial_zero_eq_C_apply, coeff_comp_monomial, isHomogeneous_iff_eq_homogeneousComponent, MvPolynomial.coeff_coe, coeff_trunc', coeff_zero_mul_X, coeff_inv_aux, coeff_weightedHomogeneousComponent, coeff_apply, coeff_trunc, eq_zero_iff_forall_coeff_eq_zero_and, coeff_truncFun', coeff_prod, coeff_C_mul, weightedHomogeneousComponent_mul_of_le_weightedOrder, coeff_zero_one, coeff_add_mul_monomial, monomial_pow, coeff_zero_X_mul, map_monomial, le_order_smul, coeff_zero_iff, coeff_mul_left_one_sub_of_lt_weightedOrder, weightedOrder_eq_nat, expand_monomial, coeff_rescale, WithPiTopology.hasSum_of_monomials_self, eq_zero_iff_forall_coeff_zero, coeff_truncFun, HahnSeries.coeff_toMvPowerSeries_symm, isWeightedHomogeneous_weightedHomogeneousComponent, coeff_expand_of_not_dvd, coeff_zero_C, coeff_monomial, X_dvd_iff, coeff_C, homogeneousComponent_mul_of_le_order, WithPiTopology.summable_iff_summable_coeff, instIsScalarTower, coeff_invOfUnit, coeff_map, coeff_mul_eq_coeff_trunc'_mul_trunc', coeff_smul, coeff_zero_X, HahnSeries.coeff_toMvPowerSeries, order_monomial, substAlgHom_monomial, PowerSeries.coeff_subst_finite, isHomogeneous_homogeneousComponent, aeval_eq_sum, monomial_zero_one, monomial_one_eq, monomial_eq, coeff_monomial_ne, coeff_subst_finite, order_eq_nat, IsWeightedHomogeneous.coeff_eq_zero, coeff_mul_left_one_sub_of_lt_order, monomial_mul_monomial, WithPiTopology.tendsto_iff_coeff_tendsto, isWeightedHomogeneous_iff_eq_weightedHomogeneousComponent, monomial_smul_const, hasSum_evalβ‚‚, PowerSeries.HasSubst.monomial, monomial_smul_eq, order_monomial_of_ne_zero, IsHomogeneous.coeff_eq_zero, coeff_eq_zero_of_lt_lexOrder, coeff_mul_of_add_lexOrder, coeff_eq_zero_of_lt_weightedOrder, monomial_eq', coeff_mul_C, coeff_mul, coeff_mul_prod_one_sub_of_lt_weightedOrder, coeff_add_monomial_mul, prod_monomial, prod_smul_X_eq_smul_monomial_one, commute_monomial
instMul πŸ“–CompOp
197 mathmath: PowerSeries.coeff_mul_eq_coeff_trunc_mul_truncβ‚‚, PowerSeries.coeff_mul_one_sub_of_lt_order, PowerSeries.coeff_mul_of_lt_order, PowerSeries.coeff_mul_C, coeff_mul_monomial, PowerSeries.weierstrassDistinguished_mul, PowerSeries.coeff_X_mul_largeSchroderSeries, PowerSeries.trunc_mul_trunc, PowerSeries.HasSubst.mul_right, PowerSeries.trunc_X_pow_self_mul, le_order_mul, PowerSeries.eq_mul_weierstrassDiv_add_weierstrassMod, PowerSeries.coeff_succ_mul_X, coeff_monomial_mul, PowerSeries.coeff_mul_mem_ideal_of_coeff_right_mem_ideal', X_pow_mul, PowerSeries.Inv_divided_by_X_pow_order_leftInv, commute_X_pow, PowerSeries.derivative_inv', PowerSeries.divXPowOrder_mul, PowerSeries.rescale_X, coeff_mul_right_one_sub_of_lt_weightedOrder, le_weightedOrder_mul, PowerSeries.inv_eq_iff_mul_eq_one, PowerSeries.order_mul_ge, smul_eq_C_mul, PowerSeries.subst_mul, Polynomial.bernoulli_generating_function, PowerSeries.eq_mul_inv_iff_mul_eq, eq_inv_iff_mul_eq_one, PowerSeries.eq_shift_mul_X_pow_add_trunc, bernoulliPowerSeries_mul_exp_sub_one, PowerSeries.binomialSeries_add, HahnSeries.toMvPowerSeries_symm_apply_coeff, DividedPowers.exp_add, coeff_mul_prod_one_sub_of_lt_order, weightedOrder_mul, subst_monomial, qExpansion_of_mul, PowerSeries.coeff_X_mul_largeSchroderSeriesSeries_sq, lexOrder_mul, commute_X, PowerSeries.mk_add_choose_mul_one_sub_pow_eq_one, PowerSeries.trunc_trunc_mul_trunc, PowerSeries.coe_mul, PowerSeries.trunc_mul_C, inv_eq_iff_mul_eq_one, PowerSeries.commute_X_pow, HahnSeries.SummableFamily.hsum_powerSeriesFamily_mul, PowerSeries.IsWeierstrassDivisionAt.eq_mul_add, PowerSeries.IsRestricted.mul, PowerSeries.largeSchroderSeries_eq_one_add_X_mul_largeSchroderSeries_add_X_mul_largeSchroderSeries_sq, bernoulli'PowerSeries_mul_exp_sub_one, PowerSeries.mul_X_injective, PowerSeries.exp_mul_exp_neg_eq_one, mul_assoc, PowerSeries.monomial_mul_monomial, PowerSeries.weierstrassUnit_mul, PowerSeries.le_order_mul, PowerSeries.eq_X_mul_shift_add_const, PowerSeries.exp_mul_exp_eq_exp_add, subst_mul, inv_mul_cancel, PowerSeries.X_pow_mul, PowerSeries.trunc_trunc_mul, PowerSeries.coeff_mul_mem_ideal_of_coeff_right_mem_ideal, one_mul, PowerSeries.sub_const_eq_X_mul_shift, coeff_mul_right_one_sub_of_lt_order, HasSubst.mul_right, invOfUnit_mul, PowerSeries.isWeierstrassFactorizationAt_iff, PowerSeries.mul_inv_cancel, PowerSeries.invUnitsSub_mul_sub, PowerSeries.eq_X_pow_mul_shift_add_trunc, IsWeightedHomogeneous.mul, PowerSeries.mul_inv_rev, PowerSeries.X_mul_inj, PowerSeries.mul_invOfUnit, PowerSeries.one_sub_pow_add_mul_invOneSubPow_val_eq_one_sub_pow, PowerSeries.sub_const_eq_shift_mul_X, coeff_zero_mul_X, weightedOrder_mul_ge, PowerSeries.WithPiTopology.one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, WithPiTopology.one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, PowerSeries.derivative_invOf, PowerSeries.one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val, Polynomial.coeff_mul_invOneSubPow_eq_hilbertPoly_eval, X_mul, coeff_C_mul, PowerSeries.divXPowOrder_mul_divXPowOrder, PowerSeries.instNoZeroDivisors, weightedHomogeneousComponent_mul_of_le_weightedOrder, PowerSeries.coeff_mul, add_mul, HahnSeries.coeff_toPowerSeries, PowerSeries.IsWeierstrassDivisorAt.coeff_seq_mem, mul_zero, coeff_add_mul_monomial, PowerSeries.X_mul, WithPiTopology.tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, coeff_zero_X_mul, PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal', PowerSeries.X_pow_mul_injective, HahnSeries.coeff_toPowerSeries_symm, coeff_mul_left_one_sub_of_lt_weightedOrder, LaurentSeries.powerSeriesRingEquiv_coe_apply, LaurentSeries.powerSeriesEquivSubring_apply, PowerSeries.IsWeierstrassFactorizationAt.eq_mul, zero_mul, PowerSeries.eq_shift_mul_X_add_const, PowerSeries.coeff_mul_X_pow', Polynomial.coe_mul, HahnSeries.coeff_toMvPowerSeries_symm, PowerSeries.HasSubst.mul_left, PowerSeries.WithPiTopology.tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, homogeneousComponent_mul_of_le_order, LaurentSeries.powerSeriesEquivSubring_coe_apply, DividedPowers.exp_add', PowerSeries.monomial_eq_C_mul_X_pow, PowerSeries.mul_X_pow_injective, PowerSeries.eq_inv_iff_mul_eq_one, coeff_mul_eq_coeff_trunc'_mul_trunc', order_mul_ge, mul_inv_cancel, HahnSeries.coeff_toMvPowerSeries, qExpansion_mul, PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal, PowerSeries.coeff_mul_eq_coeff_trunc_mul_trunc, substAlgHom_monomial, mul_invOfUnit, PowerSeries.catalanSeries_sq_mul_X_add_one, PowerSeries.isWeierstrassDivisionAt_iff, IsHomogeneous.mul, PowerSeries.derivative_subst, HahnSeries.ofPowerSeries_apply, PowerSeries.X_pow_order_mul_divXPowOrder, HahnSeries.toMvPowerSeries_apply, eq_mul_inv_iff_mul_eq, PowerSeries.coeff_succ_X_mul, PowerSeries.eq_weierstrassDistinguished_mul_weierstrassUnit, instNoZeroDivisors, PowerSeries.coeff_C_mul, PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal, coeff_mul_left_one_sub_of_lt_order, PowerSeries.X_pow_mul_inj, PowerSeries.IsWeierstrassFactorizationAt.mul, order_mul, ModularForm.qExpansion_mul, monomial_mul_monomial, PowerSeries.coeff_zero_X_mul, PowerSeries.invUnitsSub_mul_X, mul_add, PowerSeries.coeff_C_mul_X_pow, trunc_C_mul, PowerSeries.coeff_X_pow_mul', mul_inv_rev, PowerSeries.order_mul, HahnSeries.toPowerSeries_apply, PowerSeries.coeff_mul_X_pow, PowerSeries.smul_eq_C_mul, PowerSeries.IsWeierstrassDivisorAt.seq_one, PowerSeries.Inv_divided_by_X_pow_order_rightInv, PowerSeries.heval_mul, HahnSeries.SummableFamily.support_powerSeriesFamily_subset, PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal', LaurentSeries.X_order_mul_powerSeriesPart, PowerSeries.mul_X_pow_inj, le_lexOrder_mul, PowerSeries.coeff_mul_prod_one_sub_of_lt_order, PowerSeries.mk_one_mul_one_sub_eq_one, HahnSeries.toPowerSeries_symm_apply_coeff, monomial_smul_eq, PowerSeries.coeff_one_mul, coeff_mul_of_add_lexOrder, PowerSeries.mul_X_inj, PowerSeries.derivative_inv, PowerSeries.derivativeFun_mul, PowerSeries.X_mul_injective, monomial_eq', PowerSeries.coeff_X_pow_mul, PowerSeries.coeff_zero_mul_X, coeff_mul_C, HasSubst.mul_left, PowerSeries.commute_X, MvPolynomial.coe_mul, PowerSeries.trunc_C_mul, coeff_mul, coeff_mul_prod_one_sub_of_lt_weightedOrder, PowerSeries.inv_mul_cancel, lexOrder_mul_ge, coeff_add_monomial_mul, PowerSeries.invOfUnit_mul, mul_one, trunc'_C_mul, commute_monomial, PowerSeries.derivative_pow
instOne πŸ“–CompOp
79 mathmath: Polynomial.coe_eq_one_iff, PowerSeries.coeff_mul_one_sub_of_lt_order, PowerSeries.invOneSubPow_inv_eq_one_sub_pow, PowerSeries.Inv_divided_by_X_pow_order_leftInv, Polynomial.coe_one, coeff_mul_right_one_sub_of_lt_weightedOrder, PowerSeries.inv_eq_iff_mul_eq_one, Polynomial.bernoulli_generating_function, MvPolynomial.coe_one, eq_inv_iff_mul_eq_one, bernoulliPowerSeries_mul_exp_sub_one, coeff_mul_prod_one_sub_of_lt_order, WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, MvPolynomial.coe_eq_one_iff, PowerSeries.binomialSeries_zero, PowerSeries.coeff_zero_one, PowerSeries.mk_add_choose_mul_one_sub_pow_eq_one, trunc_one, PowerSeries.divXPowOrder_one, inv_eq_iff_mul_eq_one, PowerSeries.largeSchroderSeries_eq_one_add_X_mul_largeSchroderSeries_add_X_mul_largeSchroderSeries_sq, bernoulli'PowerSeries_mul_exp_sub_one, PowerSeries.exp_mul_exp_neg_eq_one, PowerSeries.constantCoeff_one, qExpansion_one, inv_mul_cancel, Nat.Partition.powerSeriesMk_card_restricted_eq_tprod, PowerSeries.invOneSubPow_inv_zero_eq_one, coeff_one, one_mul, coeff_mul_right_one_sub_of_lt_order, invOfUnit_mul, PowerSeries.mul_inv_cancel, PowerSeries.invUnitsSub_mul_sub, PowerSeries.mul_invOfUnit, PowerSeries.one_sub_pow_add_mul_invOneSubPow_val_eq_one_sub_pow, PowerSeries.WithPiTopology.one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, WithPiTopology.one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, PowerSeries.derivative_invOf, PowerSeries.one_sub_pow_mul_invOneSubPow_val_add_eq_invOneSubPow_val, Nat.Partition.hasProd_powerSeriesMk_card_restricted, coeff_zero_one, PowerSeries.derivativeFun_one, WithPiTopology.tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, coeff_mul_left_one_sub_of_lt_weightedOrder, constantCoeff_one, PowerSeries.coeff_one, PowerSeries.order_one, PowerSeries.WithPiTopology.tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, PowerSeries.eq_inv_iff_mul_eq_one, Nat.Partition.multipliable_powerSeriesMk_card_restricted, PowerSeries.IsRestricted.one, PowerSeries.trunc_one, PowerSeries.invOneSubPow_eq_inv_one_sub_pow, mul_inv_cancel, mul_invOfUnit, PowerSeries.catalanSeries_sq_mul_X_add_one, monomial_zero_one, PowerSeries.coe_one, Nat.Partition.hasProd_genFun, PowerSeries.WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, coeff_mul_left_one_sub_of_lt_order, PowerSeries.invUnitsSub_mul_X, trunc'_one, PowerSeries.binomialSeries_nat, PowerSeries.Inv_divided_by_X_pow_order_rightInv, PowerSeries.WithPiTopology.multipliable_one_sub_X_pow, PowerSeries.coeff_mul_prod_one_sub_of_lt_order, PowerSeries.mk_one_mul_one_sub_eq_one, Nat.Partition.multipliable_genFun, PowerSeries.divXPowOrder_X, weightedOrder_one, PowerSeries.derivative_X, Nat.Partition.genFun_eq_tprod, coeff_mul_prod_one_sub_of_lt_weightedOrder, PowerSeries.inv_mul_cancel, PowerSeries.invOfUnit_mul, mul_one, WithPiTopology.multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top
instRing πŸ“–CompOp
7 mathmath: WithPiTopology.instIsTopologicalRing, LinearTopology.basis_le_iff, LinearTopology.mem_basis_iff, LinearTopology.instIsLinearTopologyMulOpposite, LinearTopology.instIsLinearTopologyOfMulOpposite, LinearTopology.hasBasis_nhds_zero, LinearTopology.basis_le
instSemiring πŸ“–CompOp
178 mathmath: coeff_zero_eq_constantCoeff_apply, hasSubst_def, MvPolynomial.coe_C, coeff_zero_eq_constantCoeff, PowerSeries.constantCoeff_subst, subst_pow, support_expand, PowerSeries.expand_subst, rescaleUnit, coeff_pow, constantCoeff_subst, coeff_X_pow, X_pow_mul, commute_X_pow, X_pow_eq, mapAlgHom_apply, evalβ‚‚Hom_eq_extend, WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, map_algebraMap_eq_subst_X, PowerSeries.HasSubst.smul', substAlgHom_X, min_lexOrder_le, continuous_aeval, monomial_mem_nonzeroDivisors, coe_substAlgHom, IsWeightedHomogeneous.add, isUnit_iff_constantCoeff, monomial_mem_nonzeroDivisorsLeft, expand_mul, smul_eq_C_mul, trunc_C, PowerSeries.coeff_subst, rescale_mul, expand_substAlgHom, PowerSeries.subst_pow, substAlgHom_eq_aeval, hasSum_aeval, HahnSeries.toMvPowerSeries_symm_apply_coeff, X_pow_dvd_iff, comp_aeval, WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, subst_monomial, le_weightedOrder_map, trunc'_trunc'_pow, map_subst, WithPiTopology.instContinuousSMul, coe_evalβ‚‚Hom, PowerSeries.substAlgHom_X, expand_one_apply, LinearTopology.isTopologicallyNilpotent_iff_constantCoeff, one_le_order_iff_constCoeff_eq_zero, constantCoeff_invOfUnit, monomial_mem_nonzeroDivisorsRight, constantCoeff_inv, le_weightedOrder_pow, min_weightedOrder_le_add, constantCoeff_C, PowerSeries.substAlgHom_comp_substAlgHom, monomial_zero_eq_C, coeff_inv, constantCoeff_comp_C, HasSubst.comp, rescaleAlgHom_one, c_eq_algebraMap, coeff_subst, expand_eq_expand, substAlgHom_comp_substAlgHom_apply, instIsLocalRing, constantCoeff_smul, HasSubst.const_coeff, rescaleAlgHom_mul, expand_one, constantCoeff_zero, C_inv, coeff_expand_smul, aeval_coe, trunc'_expand, monomial_zero_eq_C_apply, trunc_map, instNontrivialSubalgebraOfNonempty, expand_subst, map_toSubring, HasSubst.X_pow, map_eq_zero, MvPolynomial.coe_add, coeff_C_mul, constantCoeff_toSubring, substAlgHom_coe, PowerSeries.map_subst, algebraMap_apply'', rescale_homogeneous_eq_smul, rescale_zero, MvPolynomial.coe_pow, monomial_pow, expand_comp_substAlgHom, map_map, PowerSeries.subst_coe, rescale_rescale, map_monomial, MvPolynomial.coeToMvPowerSeries.algHom_apply, map_id, expand_monomial, inv_eq_zero, order_expand, map_iterateFrobenius_expand, MvPolynomial.coe_smul, coeff_rescale, constantCoeff_one, algebraMap_apply', HahnSeries.coeff_toMvPowerSeries_symm, order_ne_zero_iff_constCoeff_eq_zero, coeff_expand_of_not_dvd, rescaleAlgHom_apply, coeff_zero_C, X_dvd_iff, coeff_C, map.isLocalHom, constantCoeff_map, rescale_eq_subst, coe_aeval, weightedOrder_add_of_weightedOrder_ne, constantCoeff_X, HasSubst.smul_X, map_frobenius_expand, coeff_map, expand_X, map_expand, PowerSeries.HasSubst.comp, MvPolynomial.coeToMvPowerSeries.ringHom_apply, constantCoeff_expand, HahnSeries.coeff_toMvPowerSeries, substAlgHom_monomial, algebraMap_apply, PowerSeries.coeff_subst_finite, aeval_eq_sum, monomial_one_eq, order_add_of_order_ne, monomial_eq, HahnSeries.toMvPowerSeries_apply, invOfUnit_eq, coeff_subst_finite, X_mem_nonzeroDivisors, WithPiTopology.instIsTopologicalSemiring, PowerSeries.substAlgHom_coe, subst_smul, support_expand_subset, rescale_one, PowerSeries.subst_smul, evalβ‚‚_C, trunc_C_mul, map_X, map_C, PowerSeries.substAlgHom_comp_substAlgHom_apply, monomial_smul_const, trunc'_map, rescale_zero_apply, expand_mul_eq_comp, le_order_pow, PowerSeries.HasSubst.smul_X, min_order_le_add, monomial_smul_eq, smul_inv, substAlgHom_apply, WithPiTopology.continuous_constantCoeff, substAlgHom_comp_substAlgHom, HasSubst.expand, PowerSeries.coe_substAlgHom, monomial_eq', coeff_mul_C, IsHomogeneous.add, map_comp, expand_C, trunc'_C, prod_smul_X_eq_smul_monomial_one, trunc'_C_mul, WithPiTopology.continuous_C, WithPiTopology.multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top, le_order_map
instZero πŸ“–CompOp
28 mathmath: zero_inv, coeff_zero, PowerSeries.HasSubst.zero, MvPolynomial.coe_eq_zero_iff, LinearTopology.isTopologicallyNilpotent_iff_constantCoeff, MvPolynomial.coe_zero, weightedHomogeneousComponent_of_lt_weightedOrder_eq_zero, constantCoeff_zero, homogeneousComponent_of_lt_order_eq_zero, lexOrder_zero, eq_zero_iff_forall_coeff_eq_zero_and, map_eq_zero, mul_zero, order_eq_top_iff, coeff_zero_iff, inv_eq_zero, zero_mul, eq_zero_iff_forall_coeff_zero, lexOrder_eq_top_iff_eq_zero, HasSubst.zero, X_inv, weightedOrder_zero, instNoZeroDivisors, WithPiTopology.isTopologicallyNilpotent_of_constantCoeff_zero, WithPiTopology.variables_tendsto_zero, order_zero, weightedOrder_eq_top_iff, LinearTopology.hasBasis_nhds_zero
map πŸ“–CompOp
25 mathmath: mapAlgHom_apply, map_algebraMap_eq_subst_X, le_weightedOrder_map, map_subst, trunc_map, map_toSubring, map_eq_zero, PowerSeries.map_subst, algebraMap_apply'', map_map, map_monomial, MvPolynomial.coeToMvPowerSeries.algHom_apply, map_id, map_iterateFrobenius_expand, algebraMap_apply', map.isLocalHom, constantCoeff_map, map_frobenius_expand, coeff_map, map_expand, map_X, map_C, trunc'_map, map_comp, le_order_map
mapAlgHom πŸ“–CompOp
1 mathmath: mapAlgHom_apply
monomial πŸ“–CompOp
39 mathmath: weightedOrder_monomial, coeff_mul_monomial, coeff_monomial_mul, X_pow_eq, monomial_mem_nonzeroDivisors, monomial_mem_nonzeroDivisorsLeft, coeff_monomial_same, weightedOrder_monomial_of_ne_zero, subst_monomial, MvPolynomial.coe_monomial, X_def, monomial_def, monomial_mem_nonzeroDivisorsRight, WithPiTopology.as_tsum, monomial_zero_eq_C, monomial_zero_eq_C_apply, coeff_comp_monomial, coeff_add_mul_monomial, monomial_pow, map_monomial, expand_monomial, WithPiTopology.hasSum_of_monomials_self, coeff_monomial, order_monomial, substAlgHom_monomial, monomial_zero_one, monomial_one_eq, monomial_eq, coeff_monomial_ne, monomial_mul_monomial, monomial_smul_const, PowerSeries.HasSubst.monomial, monomial_smul_eq, order_monomial_of_ne_zero, monomial_eq', coeff_add_monomial_mul, prod_monomial, prod_smul_X_eq_smul_monomial_one, commute_monomial
toSubring πŸ“–CompOp
5 mathmath: map_toSubring, constantCoeff_toSubring, order_toSubring, coeff_toSubring, weightedOrder_toSubring

Theorems

NameKindAssumesProvesValidatesDepends On
X_def πŸ“–mathematicalβ€”X
Nat.instSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
β€”β€”
X_dvd_iff πŸ“–mathematicalβ€”MvPowerSeries
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
instSemiring
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”pow_one
X_pow_dvd_iff
zero_lt_one
Nat.instZeroLEOneClass
X_inj πŸ“–mathematicalβ€”Xβ€”Finsupp.single_eq_single_iff
one_ne_zero
NeZero.one
coeff_X
X_mul πŸ“–mathematicalβ€”MvPowerSeries
instMul
X
β€”Commute.eq
Commute.symm
commute_X
X_pow_dvd_iff πŸ“–mathematicalβ€”MvPowerSeries
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
instSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_mul
Finset.sum_eq_zero
coeff_X_pow
Mathlib.Tactic.Contrapose.contrapose₃
Finset.HasAntidiagonal.mem_antidiagonal
Finsupp.add_apply
Finsupp.single_eq_same
MulZeroClass.zero_mul
ext
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Finset.sum_eq_single
Finsupp.ext
add_tsub_cancel_left
Finsupp.orderedSub
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_comm
one_mul
Mathlib.Tactic.Contrapose.contraposeβ‚‚
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Finsupp.single_eq_of_ne'
tsub_zero
add_zero
Finsupp.coe_add
Pi.add_apply
X_pow_eq πŸ“–mathematicalβ€”MvPowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”pow_zero
Finsupp.single_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_succ
Finsupp.single_add
X.eq_1
monomial_mul_monomial
one_mul
X_pow_mul πŸ“–mathematicalβ€”MvPowerSeries
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
β€”Commute.eq
Commute.symm
commute_X_pow
add_mul πŸ“–mathematicalβ€”MvPowerSeries
instMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
coeff_mul
Finset.sum_congr
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
add_mul
Distrib.rightDistribClass
Finset.sum_add_distrib
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instSemiring
RingHom.instFunLike
algebraMap
instAlgebra
C
β€”map_C
algebraMap_apply' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
MvPowerSeries
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
instSemiring
RingHom.instFunLike
algebraMap
algebraMvPolynomial
map
MvPolynomial.toMvPowerSeries
β€”β€”
algebraMap_apply'' πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instSemiring
RingHom.instFunLike
algebraMap
algebraMvPowerSeries
map
β€”β€”
c_eq_algebraMap πŸ“–mathematicalβ€”C
CommSemiring.toSemiring
algebraMap
MvPowerSeries
instSemiring
instAlgebra
Algebra.id
β€”β€”
coeff_C πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
RingHom
instSemiring
RingHom.instFunLike
C
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
Finsupp.instDecidableEq
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_monomial
coeff_C_mul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instMul
RingHom
instSemiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”zero_add
coeff_add_monomial_mul
coeff_X πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
X
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.single
Finsupp.instDecidableEq
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_monomial
coeff_X_pow πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.single
Finsupp.instDecidableEq
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toMulZeroClass
β€”X_pow_eq
coeff_monomial
coeff_add_monomial_mul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
instMul
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_monomial_mul
le_add_right
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_rfl
add_tsub_cancel_left
Finsupp.orderedSub
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
coeff_add_mul_monomial πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
instMul
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_mul_monomial
le_add_left
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_rfl
add_tsub_cancel_right
Finsupp.orderedSub
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
coeff_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
β€”β€”
coeff_comp_monomial πŸ“–mathematicalβ€”LinearMap.comp
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
RingHom.id
RingHomCompTriple.ids
coeff
monomial
LinearMap.id
β€”LinearMap.ext
RingHomCompTriple.ids
coeff_monomial_same
coeff_eq_zero_of_constantCoeff_nilpotent πŸ“–mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nat.instAddCommMonoid
Finsupp.instAddZeroClass
AddMonoidHom.instFunLike
Finsupp.degree
LinearMap
RingHom.id
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
β€”coeff_pow
Finset.sum_eq_zero
Finset.filter_subset
coeff_zero_eq_constantCoeff
Finset.prod_sdiff
mul_eq_zero_of_right
Finset.prod_congr
Finset.prod_const
add_comm
Finset.card_sdiff_add_card_eq_card
Finset.card_range
le_trans
Finset.mem_finsuppAntidiag
Finset.sum_sdiff
add_zero
mul_one
Finsupp.degree_eq_weight_one
map_sum
AddMonoidHom.instAddMonoidHomClass
Finset.sum_congr
Finset.card_nsmul_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
not_lt
Finsupp.degree_eq_zero_iff
Nat.instCanonicallyOrderedAdd
pow_add
MulZeroClass.zero_mul
coeff_index_single_X πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_X
one_ne_zero
coeff_index_single_self_X πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp.single
MulZeroClass.toZero
Nat.instMulZeroClass
X
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”coeff_monomial_same
coeff_map πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
RingHom
instSemiring
RingHom.instFunLike
map
β€”β€”
coeff_monomial πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instDecidableEq
NonUnitalNonAssocSemiring.toMulZeroClass
β€”monomial_def
LinearMap.proj_apply
LinearMap.single_apply
Pi.single_apply
coeff_monomial_mul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instMul
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instLE
Finsupp.decidableLE
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finsupp.tsub
Nat.instOrderedSub
NonUnitalNonAssocSemiring.toMulZeroClass
β€”eq_of_coeff_monomial_ne_zero
left_ne_zero_of_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_mul
Finset.sum_filter_of_ne
Finset.filter_fst_eq_antidiagonal
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.orderedSub
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Finset.sum_ite_index
Finset.sum_singleton
coeff_monomial_same
coeff_monomial_ne πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
monomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”monomial_def
Pi.single_eq_of_ne
coeff_monomial_same πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
monomial
β€”monomial_def
Pi.single_eq_same
coeff_mul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instMul
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finset.HasAntidiagonal.antidiagonal
Finsupp.instAddMonoid
Nat.instAddMonoid
Finsupp.instHasAntidiagonal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.sum_congr
coeff_mul_C πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instMul
RingHom
instSemiring
RingHom.instFunLike
C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”add_zero
coeff_add_mul_monomial
coeff_mul_monomial πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instMul
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instLE
Finsupp.decidableLE
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finsupp.tsub
Nat.instOrderedSub
NonUnitalNonAssocSemiring.toMulZeroClass
β€”eq_of_coeff_monomial_ne_zero
right_ne_zero_of_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_mul
Finset.sum_filter_of_ne
Finset.filter_snd_eq_antidiagonal
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.orderedSub
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Finset.sum_ite_index
Finset.sum_singleton
coeff_monomial_same
coeff_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instOne
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
Finsupp.instDecidableEq
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_monomial
coeff_pow πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finset.finsuppAntidiag
Finsupp.instHasAntidiagonal
Finsupp.instDecidableEq
Finset.range
Finset.prod
CommSemiring.toCommMonoid
Finsupp.instFunLike
β€”Finset.prod_const
Finset.card_range
coeff_prod
coeff_prod πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finset.prod
CommSemiring.toCommMonoid
instCommSemiring
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
Finset.finsuppAntidiag
Finsupp.instHasAntidiagonal
Finsupp.instDecidableEq
Finsupp.instFunLike
β€”Finset.induction_on
coeff_one
Finset.sum_congr
Finset.finsuppAntidiag_empty
Finset.sum_const
nsmul_eq_mul
mul_one
Finset.card_singleton
Nat.cast_one
Nat.cast_zero
Finset.finsuppAntidiag_insert
Finset.prod_insert
coeff_mul
Finset.sum_biUnion
Finsupp.instIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
Finsupp.coe_update
Function.update_self
DFunLike.congr_fun
Finset.sum_map
Finset.prod_congr
Finset.mul_sum
Finset.sum_attach
Function.update_of_ne
coeff_smul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coeff_toSubring πŸ“–mathematicalSubring
SetLike.instMembership
Subring.instSetLike
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Subring.toRing
toSubring
β€”β€”
coeff_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
coeff_zero_C πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
RingHom
instSemiring
RingHom.instFunLike
C
β€”coeff_monomial_same
coeff_zero_X πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
X
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_X
one_ne_zero
Finsupp.single_eq_zero
coeff_zero_X_mul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
instMul
X
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Commute.eq
commute_X
coeff_zero_mul_X
coeff_zero_eq_constantCoeff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
RingHom
instSemiring
RingHom.instFunLike
constantCoeff
β€”β€”
coeff_zero_eq_constantCoeff_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
RingHom
instSemiring
RingHom.instFunLike
constantCoeff
β€”β€”
coeff_zero_mul_X πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
instMul
X
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Finsupp.single_eq_same
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_mul_monomial
coeff_zero_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”coeff_monomial_same
commute_X πŸ“–mathematicalβ€”Commute
MvPowerSeries
instMul
X
β€”commute_monomial
Commute.one_right
commute_X_pow πŸ“–mathematicalβ€”Commute
MvPowerSeries
instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
β€”Commute.pow_right
commute_X
commute_monomial πŸ“–mathematicalβ€”Commute
MvPowerSeries
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
coeff
β€”commute_iff_eq
ext_iff
coeff_add_monomial_mul
add_comm
coeff_add_mul_monomial
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_mul_monomial
coeff_monomial_mul
constantCoeff_C πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
C
β€”β€”
constantCoeff_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
X
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”coeff_zero_X
constantCoeff_comp_C πŸ“–mathematicalβ€”RingHom.comp
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
constantCoeff
C
RingHom.id
β€”β€”
constantCoeff_map πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
map
β€”β€”
constantCoeff_one πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
constantCoeff_smul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
β€”β€”
constantCoeff_toSubring πŸ“–mathematicalSubring
SetLike.instMembership
Subring.instSetLike
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
RingHom
instSemiring
Subring.toRing
RingHom.instFunLike
constantCoeff
toSubring
β€”β€”
constantCoeff_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
constantCoeff
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
eq_of_coeff_monomial_ne_zero πŸ“–β€”β€”β€”β€”by_contra
coeff_monomial_ne
eq_zero_iff_forall_coeff_zero πŸ“–mathematicalβ€”MvPowerSeries
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
LinearMap
RingHom.id
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
β€”ext_iff
ext πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
β€”ext
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
MvPowerSeries
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoid
instModule
β€”Pi.isScalarTower
instNontrivial πŸ“–mathematicalβ€”Nontrivial
MvPowerSeries
β€”Function.nontrivial
instNontrivialSubalgebraOfNonempty πŸ“–mathematicalβ€”Nontrivial
Subalgebra
MvPowerSeries
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
β€”SetLike.ext_iff
ext_iff
algebraMap_apply
coeff_C
coeff_index_single_self_X
NeZero.one
isUnit_constantCoeff πŸ“–mathematicalIsUnit
MvPowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
constantCoeff
β€”IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mapAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
instSemiring
instAlgebra
AlgHom.funLike
mapAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
map
RingHomClass.toRingHom
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”β€”
map_C πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
map
C
β€”map_monomial
map_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
map
X
β€”map_monomial
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_comp πŸ“–mathematicalβ€”map
RingHom.comp
Semiring.toNonAssocSemiring
MvPowerSeries
instSemiring
β€”β€”
map_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
DivisionSemiring.toSemiring
RingHom.instFunLike
map
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instSemiring
β€”β€”
map_map πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
RingHom.instFunLike
map
RingHom.comp
β€”ext
map_monomial πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
RingHom.instFunLike
map
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
β€”ext
coeff_monomial
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_toSubring πŸ“–mathematicalSubring
SetLike.instMembership
Subring.instSetLike
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
RingHom
instSemiring
Subring.toRing
RingHom.instFunLike
map
Subring.subtype
toSubring
β€”β€”
monomial_def πŸ“–mathematicalβ€”monomial
LinearMap.single
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Finsupp.instDecidableEq
β€”monomial.eq_1
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
monomial_eq πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp.prod
MulZeroClass.toZero
Nat.instMulZeroClass
CommSemiring.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instCommSemiring
instSemiring
Algebra.toSMul
instAlgebra
Algebra.id
X
β€”prod_smul_X_eq_smul_monomial_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_eq_mul
mul_one
monomial_eq' πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
instMul
RingHom
instSemiring
RingHom.instFunLike
C
Finsupp.prod
MulZeroClass.toZero
Nat.instMulZeroClass
CommSemiring.toCommMonoid
instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”mul_one
smul_eq_mul
smul_eq_C_mul
LinearMap.CompatibleSMul.map_smul
LinearMap.IsScalarTower.compatibleSMul'
instIsScalarTower
IsScalarTower.right
monomial_one_eq
monomial_mul_monomial πŸ“–mathematicalβ€”MvPowerSeries
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAdd
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”ext
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
coeff_mul_monomial
coeff_monomial
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finsupp.isOrderedAddMonoid
Finsupp.orderedSub
add_tsub_cancel_right
Finsupp.addLeftReflectLE
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
MulZeroClass.zero_mul
le_add_left
le_rfl
monomial_one_eq πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finsupp.prod
MulZeroClass.toZero
Nat.instMulZeroClass
CommSemiring.toCommMonoid
instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
X
β€”MvPolynomial.monomial_eq
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
monomial_pow πŸ“–mathematicalβ€”MvPowerSeries
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
CommSemiring.toSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
β€”Finset.pow_eq_prod_const
prod_monomial
Finset.nsmul_eq_sum_const
monomial_smul_const πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finsupp.sum
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.instAddCommMonoid
Finsupp.prod
CommSemiring.toCommMonoid
instCommSemiring
instSemiring
Algebra.toSMul
instAlgebra
Algebra.id
X
β€”prod_smul_X_eq_smul_monomial_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
smul_eq_mul
mul_one
Finset.sum_congr
Finset.prod_congr
Finset.prod_pow_eq_pow_sum
monomial_smul_eq πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
instMul
RingHom
instSemiring
RingHom.instFunLike
C
Finsupp.prod
CommSemiring.toCommMonoid
instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”monomial_eq'
Finsupp.prod_of_support_subset
Finsupp.support_smul
pow_zero
Finsupp.prod.eq_1
Finset.prod_congr
pow_mul
monomial_zero_eq_C πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
RingHom
instSemiring
RingHom.instFunLike
C
β€”β€”
monomial_zero_eq_C_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
RingHom
instSemiring
RingHom.instFunLike
C
β€”β€”
monomial_zero_one πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOne
β€”β€”
mul_add πŸ“–mathematicalβ€”MvPowerSeries
instMul
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
coeff_mul
Finset.sum_congr
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
mul_add
Distrib.leftDistribClass
Finset.sum_add_distrib
mul_assoc πŸ“–mathematicalβ€”MvPowerSeries
instMul
β€”ext
coeff_mul
Finset.sum_congr
Finset.sum_mul
Finset.sum_sigma'
Finset.mul_sum
Finset.sum_nbij'
add_assoc
Sigma.eta
mul_assoc
mul_one πŸ“–mathematicalβ€”MvPowerSeries
instMul
instOne
β€”ext
add_zero
mul_one
coeff_add_mul_monomial
mul_zero πŸ“–mathematicalβ€”MvPowerSeries
instMul
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
coeff_mul
Finset.sum_congr
MulZeroClass.mul_zero
Finset.sum_const_zero
ne_zero_iff_exists_coeff_ne_zero πŸ“–β€”β€”β€”β€”β€”
one_mul πŸ“–mathematicalβ€”MvPowerSeries
instMul
instOne
β€”ext
zero_add
one_mul
coeff_add_monomial_mul
prod_monomial πŸ“–mathematicalβ€”Finset.prod
MvPowerSeries
CommSemiring.toCommMonoid
instCommSemiring
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finset.sum
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instAddCommMonoid
Nat.instAddCommMonoid
β€”Finset.cons_induction
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finset.prod_cons
monomial_mul_monomial
Finset.sum_cons
prod_smul_X_eq_smul_monomial_one πŸ“–mathematicalβ€”Finsupp.prod
MvPowerSeries
MulZeroClass.toZero
Nat.instMulZeroClass
CommSemiring.toCommMonoid
instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
CommSemiring.toSemiring
Algebra.toSMul
instAlgebra
X
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Finsupp.prod_congr
algebra_compatible_smul
instIsScalarTower
IsScalarTower.right
smul_eq_C_mul
IsScalarTower.algebraMap_smul
mul_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finsupp.prod_mul
map_pow
map_finsuppProd
smul_eq_C_mul πŸ“–mathematicalβ€”MvPowerSeries
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
instMul
DFunLike.coe
RingHom
instSemiring
RingHom.instFunLike
C
β€”ext
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
coeff_C_mul
zero_mul πŸ“–mathematicalβ€”MvPowerSeries
instMul
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”ext
coeff_mul
Finset.sum_congr
MulZeroClass.zero_mul
Finset.sum_const_zero

(root)

Definitions

NameCategoryTheorems
MvPowerSeries πŸ“–CompOp
370 mathmath: MvPowerSeries.coeff_zero_eq_constantCoeff_apply, MvPowerSeries.hasSubst_def, MvPowerSeries.WithPiTopology.tendsto_trunc_atTop, MvPolynomial.coe_C, MvPowerSeries.coeff_zero_eq_constantCoeff, MvPowerSeries.zero_inv, MvPowerSeries.coeff_zero, MvPowerSeries.weightedOrder_monomial, MvPowerSeries.eq_iff_frequently_trunc'_eq, MvPowerSeries.WithPiTopology.instIsTopologicalRing, PowerSeries.constantCoeff_subst, MvPowerSeries.trunc'_trunc', MvPowerSeries.coeff_mul_monomial, MvPowerSeries.subst_pow, MvPowerSeries.support_expand, MvPowerSeries.subst_eq_evalβ‚‚, PowerSeries.expand_subst, PowerSeries.expand_apply, PowerSeries.HasSubst.mul_right, MvPowerSeries.rescaleUnit, MvPowerSeries.coeff_pow, MvPowerSeries.le_order_mul, MvPowerSeries.constantCoeff_subst, MvPowerSeries.trunc'_expand_trunc', MvPowerSeries.subst_add, MvPowerSeries.coeff_monomial_mul, MvPowerSeries.coeff_X_pow, MvPowerSeries.X_pow_mul, PowerSeries.HasSubst.zero, MvPowerSeries.commute_X_pow, MvPowerSeries.X_pow_eq, MvPowerSeries.mapAlgHom_apply, MvPowerSeries.evalβ‚‚Hom_eq_extend, MvPowerSeries.WithPiTopology.isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, MvPowerSeries.ext_trunc', MvPowerSeries.LinearTopology.basis_le_iff, MvPowerSeries.map_algebraMap_eq_subst_X, MvPowerSeries.WithPiTopology.summable_of_tendsto_order_atTop_nhds_top, PowerSeries.HasSubst.smul', MvPowerSeries.substAlgHom_X, MvPowerSeries.min_lexOrder_le, MvPowerSeries.continuous_aeval, MvPowerSeries.monomial_mem_nonzeroDivisors, MvPowerSeries.coe_substAlgHom, MvPowerSeries.coeff_mul_right_one_sub_of_lt_weightedOrder, MvPolynomial.toMvPowerSeries_isUniformInducing, MvPowerSeries.le_weightedOrder_mul, MvPowerSeries.le_order_prod, MvPowerSeries.IsWeightedHomogeneous.add, MvPowerSeries.isUnit_iff_constantCoeff, MvPowerSeries.monomial_mem_nonzeroDivisorsLeft, MvPowerSeries.expand_mul, MvPowerSeries.smul_eq_C_mul, PowerSeries.subst_mul, MvPowerSeries.trunc_C, PowerSeries.coeff_subst, MvPolynomial.coe_one, MvPowerSeries.eq_inv_iff_mul_eq_one, MvPowerSeries.rescale_mul, MvPowerSeries.coeff_X, MvPowerSeries.expand_substAlgHom, MvPowerSeries.le_weightedOrder_prod, PowerSeries.subst_pow, MvPowerSeries.substAlgHom_eq_aeval, MvPowerSeries.coeff_monomial_same, MvPowerSeries.hasSum_aeval, MvPowerSeries.weightedOrder_monomial_of_ne_zero, HahnSeries.toMvPowerSeries_symm_apply_coeff, MvPowerSeries.X_pow_dvd_iff, MvPowerSeries.coeff_mul_prod_one_sub_of_lt_order, MvPowerSeries.comp_aeval, MvPowerSeries.WithPiTopology.multipliable_one_add_of_tendsto_order_atTop_nhds_top, MvPolynomial.coe_eq_one_iff, MvPowerSeries.continuous_evalβ‚‚, MvPowerSeries.weightedOrder_mul, MvPowerSeries.coeff_index_single_X, MvPowerSeries.LinearTopology.mem_basis_iff, MvPowerSeries.subst_monomial, MvPowerSeries.le_weightedOrder_map, MvPowerSeries.coeff_of_lt_order, MvPolynomial.coe_eq_zero_iff, MvPowerSeries.trunc'_trunc'_pow, MvPowerSeries.lexOrder_mul, MvPolynomial.coe_monomial, MvPowerSeries.X_def, MvPowerSeries.map_subst, MvPowerSeries.WithPiTopology.instContinuousSMul, MvPowerSeries.ext_iff, MvPowerSeries.commute_X, MvPowerSeries.trunc_one, MvPowerSeries.coe_evalβ‚‚Hom, MvPowerSeries.WithPiTopology.continuous_coeff, MvPowerSeries.inv_eq_iff_mul_eq_one, PowerSeries.substAlgHom_X, MvPowerSeries.le_lexOrder_iff, MvPowerSeries.expand_one_apply, MvPowerSeries.LinearTopology.isTopologicallyNilpotent_iff_constantCoeff, MvPowerSeries.one_le_order_iff_constCoeff_eq_zero, MvPowerSeries.constantCoeff_invOfUnit, MvPowerSeries.monomial_mem_nonzeroDivisorsRight, MvPowerSeries.coeff_index_single_self_X, MvPowerSeries.WithPiTopology.as_tsum, MvPowerSeries.constantCoeff_inv, MvPowerSeries.le_weightedOrder_pow, MvPowerSeries.WithPiTopology.uniformContinuous_coeff, MvPowerSeries.min_weightedOrder_le_add, MvPolynomial.coe_zero, MvPowerSeries.constantCoeff_C, PowerSeries.substAlgHom_comp_substAlgHom, MvPowerSeries.monomial_zero_eq_C, MvPowerSeries.coeff_inv, MvPowerSeries.constantCoeff_comp_C, MvPowerSeries.HasSubst.comp, MvPowerSeries.mul_assoc, MvPowerSeries.subst_comp_subst, MvPowerSeries.LinearTopology.instIsLinearTopologyMulOpposite, MvPowerSeries.coeff_homogeneousComponent, MvPowerSeries.rescaleAlgHom_one, MvPowerSeries.c_eq_algebraMap, MvPowerSeries.weightedHomogeneousComponent_of_lt_weightedOrder_eq_zero, MvPowerSeries.WithPiTopology.hasSum_iff_hasSum_coeff, MvPowerSeries.coeff_subst, MvPowerSeries.expand_eq_expand, MvPowerSeries.substAlgHom_comp_substAlgHom_apply, MvPowerSeries.instIsLocalRing, MvPowerSeries.constantCoeff_smul, MvPowerSeries.HasSubst.const_coeff, MvPowerSeries.subst_mul, MvPowerSeries.inv_mul_cancel, MvPowerSeries.rescaleAlgHom_mul, MvPowerSeries.HasSubst.coeff_zero, MvPowerSeries.expand_one, MvPowerSeries.constantCoeff_zero, MvPowerSeries.coeff_one, MvPowerSeries.C_inv, MvPowerSeries.one_mul, MvPowerSeries.coeff_mul_right_one_sub_of_lt_order, MvPowerSeries.HasSubst.mul_right, MvPowerSeries.coeff_expand_smul, MvPowerSeries.le_weightedOrder_smul, MvPowerSeries.aeval_coe, MvPowerSeries.continuous_subst, MvPowerSeries.evalβ‚‚_eq_tsum, MvPowerSeries.homogeneousComponent_of_lt_order_eq_zero, MvPowerSeries.le_weightedOrder_subst, MvPowerSeries.trunc'_expand, MvPolynomial.toMvPowerSeries_isDenseInducing, MvPowerSeries.monomial_zero_eq_C_apply, MvPowerSeries.WithPiTopology.instT2Space, MvPowerSeries.coeff_comp_monomial, MvPowerSeries.IsWeightedHomogeneous.mul, MvPowerSeries.trunc_map, MvPowerSeries.WithPiTopology.instIsUniformAddGroup, MvPowerSeries.isHomogeneous_iff_eq_homogeneousComponent, MvPolynomial.coeff_coe, MvPowerSeries.coeff_trunc', MvPowerSeries.coeff_zero_mul_X, MvPowerSeries.weightedOrder_mul_ge, MvPowerSeries.coeff_inv_aux, MvPowerSeries.coeff_weightedHomogeneousComponent, MvPowerSeries.lexOrder_zero, MvPowerSeries.coeff_apply, MvPowerSeries.instNontrivialSubalgebraOfNonempty, MvPowerSeries.coeff_trunc, MvPowerSeries.eq_zero_iff_forall_coeff_eq_zero_and, MvPowerSeries.expand_subst, MvPowerSeries.hasSubst_iff_hasEval_of_discreteTopology, MvPowerSeries.HasSubst.X_pow, MvPowerSeries.LinearTopology.instIsLinearTopologyOfMulOpposite, MvPowerSeries.coeff_truncFun', MvPowerSeries.WithPiTopology.summable_prod_of_tendsto_weightedOrder_atTop_nhds_top, MvPowerSeries.coeff_prod, MvPowerSeries.map_eq_zero, MvPolynomial.coe_add, MvPowerSeries.X_mul, PowerSeries.hasSubst_iff, MvPowerSeries.coeff_C_mul, MvPowerSeries.weightedHomogeneousComponent_mul_of_le_weightedOrder, MvPowerSeries.substAlgHom_coe, PowerSeries.map_subst, MvPowerSeries.algebraMap_apply'', MvPowerSeries.rescale_homogeneous_eq_smul, MvPowerSeries.coeff_zero_one, MvPowerSeries.rescale_zero, MvPowerSeries.add_mul, MvPowerSeries.mul_zero, MvPolynomial.coe_pow, MvPowerSeries.coeff_add_mul_monomial, MvPowerSeries.monomial_pow, MvPowerSeries.expand_comp_substAlgHom, MvPowerSeries.map_map, PowerSeries.subst_coe, MvPowerSeries.rescale_rescale, MvPowerSeries.weightedOrder_neg, MvPowerSeries.coeff_zero_X_mul, MvPowerSeries.map_monomial, MvPolynomial.coeToMvPowerSeries.algHom_apply, MvPowerSeries.le_order_smul, MvPowerSeries.order_eq_top_iff, PowerSeries.subst_add, MvPowerSeries.coeff_zero_iff, MvPowerSeries.map_id, MvPowerSeries.coeff_mul_left_one_sub_of_lt_weightedOrder, MvPowerSeries.weightedOrder_eq_nat, MvPowerSeries.totalDegree_trunc', MvPowerSeries.expand_monomial, MvPowerSeries.inv_eq_zero, MvPowerSeries.order_expand, MvPowerSeries.map_iterateFrobenius_expand, MvPolynomial.coe_smul, MvPowerSeries.zero_mul, MvPowerSeries.coeff_rescale, MvPowerSeries.WithPiTopology.hasSum_of_monomials_self, MvPowerSeries.constantCoeff_one, PowerSeries.HasSubst.add, MvPowerSeries.WithPiTopology.denseRange_toMvPowerSeries, MvPowerSeries.eq_zero_iff_forall_coeff_zero, MvPowerSeries.coeff_truncFun, MvPowerSeries.algebraMap_apply', HahnSeries.coeff_toMvPowerSeries_symm, MvPowerSeries.isWeightedHomogeneous_weightedHomogeneousComponent, MvPowerSeries.HasSubst.add, PowerSeries.HasSubst.hasEval, MvPowerSeries.order_ne_zero_iff_constCoeff_eq_zero, MvPowerSeries.coeff_expand_of_not_dvd, PowerSeries.HasSubst.mul_left, MvPowerSeries.rescaleAlgHom_apply, MvPowerSeries.coeff_zero_C, MvPowerSeries.HasSubst.smul, MvPowerSeries.coeff_monomial, MvPowerSeries.X_dvd_iff, MvPowerSeries.coeff_C, MvPowerSeries.homogeneousComponent_mul_of_le_order, MvPowerSeries.map.isLocalHom, MvPowerSeries.lexOrder_eq_top_iff_eq_zero, MvPowerSeries.constantCoeff_map, MvPowerSeries.rescale_eq_subst, MvPowerSeries.coe_aeval, MvPowerSeries.WithPiTopology.summable_prod_of_tendsto_order_atTop_nhds_top, MvPowerSeries.weightedOrder_add_of_weightedOrder_ne, MvPowerSeries.WithPiTopology.summable_iff_summable_coeff, MvPowerSeries.constantCoeff_X, MvPowerSeries.HasSubst.smul_X, MvPowerSeries.HasEval.X, MvPowerSeries.instIsScalarTower, MvPowerSeries.map_frobenius_expand, MvPowerSeries.coeff_invOfUnit, MvPowerSeries.coeff_map, MvPowerSeries.expand_X, MvPowerSeries.coeff_mul_eq_coeff_trunc'_mul_trunc', MvPowerSeries.map_expand, PowerSeries.HasSubst.comp, MvPowerSeries.HasSubst.zero, MvPowerSeries.X_inv, MvPolynomial.coeToMvPowerSeries.ringHom_apply, MvPowerSeries.order_mul_ge, MvPowerSeries.WithPiTopology.tendsto_trunc'_atTop, MvPowerSeries.constantCoeff_expand, MvPowerSeries.coeff_smul, MvPowerSeries.coeff_zero_X, MvPowerSeries.mul_inv_cancel, HahnSeries.coeff_toMvPowerSeries, MvPowerSeries.order_monomial, MvPowerSeries.substAlgHom_monomial, MvPowerSeries.algebraMap_apply, PowerSeries.coeff_subst_finite, MvPowerSeries.isHomogeneous_homogeneousComponent, MvPowerSeries.aeval_eq_sum, MvPowerSeries.uniformContinuous_evalβ‚‚, MvPowerSeries.IsHomogeneous.mul, MvPowerSeries.order_neg, PowerSeries.derivative_subst, MvPowerSeries.monomial_zero_one, MvPowerSeries.monomial_one_eq, MvPowerSeries.order_add_of_order_ne, MvPowerSeries.order_prod, MvPowerSeries.monomial_eq, HahnSeries.toMvPowerSeries_apply, MvPowerSeries.eq_mul_inv_iff_mul_eq, MvPowerSeries.weightedOrder_zero, MvPowerSeries.coeff_monomial_ne, MvPowerSeries.instNoZeroDivisors, PowerSeries.substAlgHom_eq_aeval, MvPowerSeries.WithPiTopology.instTopologicalSpace_mono, MvPowerSeries.invOfUnit_eq, MvPowerSeries.coeff_subst_finite, MvPowerSeries.HasSubst.hasEval, MvPowerSeries.X_mem_nonzeroDivisors, MvPowerSeries.WithPiTopology.instIsTopologicalSemiring, MvPowerSeries.WithPiTopology.variables_tendsto_zero, MvPowerSeries.order_eq_nat, PowerSeries.substAlgHom_coe, MvPowerSeries.IsWeightedHomogeneous.coeff_eq_zero, MvPowerSeries.coeff_mul_left_one_sub_of_lt_order, MvPowerSeries.subst_smul, MvPowerSeries.order_mul, MvPowerSeries.support_expand_subset, MvPowerSeries.monomial_mul_monomial, PowerSeries.HasSubst.smul, MvPowerSeries.mul_add, MvPolynomial.coe_injective, MvPowerSeries.rescale_one, PowerSeries.subst_smul, MvPowerSeries.evalβ‚‚_C, MvPowerSeries.trunc'_one, MvPowerSeries.WithPiTopology.instT0Space, MvPowerSeries.trunc_C_mul, MvPowerSeries.map_X, MvPowerSeries.WithPiTopology.tendsto_iff_coeff_tendsto, MvPowerSeries.map_C, MvPowerSeries.isWeightedHomogeneous_iff_eq_weightedHomogeneousComponent, PowerSeries.substAlgHom_comp_substAlgHom_apply, MvPowerSeries.WithPiTopology.instCompleteSpace, MvPowerSeries.order_zero, MvPowerSeries.le_weightedOrder_subst_of_forall_ne_zero, MvPowerSeries.mul_inv_rev, MvPowerSeries.weightedOrder_eq_top_iff, MvPowerSeries.monomial_smul_const, MvPowerSeries.trunc'_map, MvPowerSeries.rescale_zero_apply, MvPowerSeries.hasSum_evalβ‚‚, MvPowerSeries.expand_mul_eq_comp, MvPowerSeries.le_order_pow, MvPowerSeries.comp_evalβ‚‚, PowerSeries.HasSubst.monomial, MvPowerSeries.subst_self, MvPowerSeries.le_lexOrder_mul, PowerSeries.HasSubst.smul_X, MvPowerSeries.min_order_le_add, MvPowerSeries.monomial_smul_eq, MvPowerSeries.order_monomial_of_ne_zero, MvPowerSeries.subst_coe, MvPowerSeries.IsHomogeneous.coeff_eq_zero, MvPowerSeries.coeff_eq_zero_of_lt_lexOrder, PowerSeries.hasSubst_iff_hasEval_of_discreteTopology, MvPowerSeries.smul_inv, MvPowerSeries.coeff_mul_of_add_lexOrder, MvPowerSeries.substAlgHom_apply, MvPowerSeries.WithPiTopology.continuous_constantCoeff, MvPowerSeries.substAlgHom_comp_substAlgHom, MvPowerSeries.coeff_eq_zero_of_lt_weightedOrder, MvPowerSeries.instNontrivial, MvPowerSeries.HasSubst.expand, PowerSeries.coe_substAlgHom, MvPowerSeries.weightedOrder_prod, MvPowerSeries.LinearTopology.hasBasis_nhds_zero, MvPowerSeries.weightedOrder_one, MvPowerSeries.monomial_eq', MvPowerSeries.coeff_mul_C, MvPowerSeries.IsHomogeneous.add, MvPowerSeries.HasSubst.mul_left, MvPowerSeries.map_comp, MvPolynomial.coe_mul, MvPowerSeries.coeff_mul, MvPowerSeries.coeff_mul_prod_one_sub_of_lt_weightedOrder, MvPowerSeries.lexOrder_mul_ge, MvPowerSeries.WithPiTopology.summable_of_tendsto_weightedOrder_atTop_nhds_top, MvPowerSeries.coeff_add_monomial_mul, MvPowerSeries.expand_C, MvPowerSeries.LinearTopology.basis_le, MvPowerSeries.trunc'_C, MvPowerSeries.prod_monomial, MvPowerSeries.mul_one, MvPowerSeries.prod_smul_X_eq_smul_monomial_one, MvPowerSeries.trunc'_C_mul, MvPowerSeries.WithPiTopology.continuous_C, MvPowerSeries.commute_monomial, PowerSeries.subst_comp_subst, MvPowerSeries.WithPiTopology.multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top, MvPowerSeries.le_order_map

---

← Back to Index