Documentation Verification Report

Expand

πŸ“ Source: Mathlib/RingTheory/MvPowerSeries/Expand.lean

Statistics

MetricCount
Definitionsexpand
1
Theoremsexpand, coeff_expand_of_not_dvd, coeff_expand_smul, constantCoeff_expand, expand_C, expand_X, expand_comp_substAlgHom, expand_eq_expand, expand_monomial, expand_mul, expand_mul_eq_comp, expand_one, expand_one_apply, expand_subst, expand_substAlgHom, map_expand, map_frobenius_expand, map_iterateFrobenius_expand, order_expand, support_expand, support_expand_subset, trunc'_expand, trunc'_expand_trunc'
23
Total24

MvPowerSeries

Definitions

NameCategoryTheorems
expand πŸ“–CompOp
23 mathmath: support_expand, PowerSeries.expand_subst, expand_mul, expand_substAlgHom, expand_one_apply, expand_eq_expand, expand_one, coeff_expand_smul, trunc'_expand, expand_subst, expand_comp_substAlgHom, expand_monomial, order_expand, map_iterateFrobenius_expand, coeff_expand_of_not_dvd, map_frobenius_expand, expand_X, map_expand, constantCoeff_expand, support_expand_subset, expand_mul_eq_comp, HasSubst.expand, expand_C

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_expand_of_not_dvd πŸ“–mathematicalDFunLike.coe
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instFunLike
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
AlgHom
instSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
finsum_eq_zero_of_forall_eq_zero
MulZeroClass.mul_zero
substAlgHom_apply
HasSubst.X_pow
coeff_subst
monomial_smul_eq
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
coeff_monomial
coeff_expand_smul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
AlgHom
instSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
β€”substAlgHom_apply
HasSubst.X_pow
coeff_subst
monomial_smul_eq
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
one_mul
finsum_eq_single
coeff_monomial
Finsupp.instIsAddTorsionFree
Nat.instIsAddTorsionFree
MulZeroClass.mul_zero
mul_one
constantCoeff_expand πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
constantCoeff
AlgHom
instAlgebra
Algebra.id
AlgHom.funLike
expand
β€”coeff_zero_eq_constantCoeff
smul_zero
coeff_expand_smul
expand_C πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”mul_one
smul_eq_C_mul
HasSubst.X_pow
expand.eq_1
AlgHom.map_smul_of_tower
LinearMap.IsScalarTower.compatibleSMul
instIsScalarTower
IsScalarTower.right
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
expand_X πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
X
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”substAlgHom_X
HasSubst.X_pow
expand_comp_substAlgHom πŸ“–mathematicalHasSubstAlgHom.comp
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
expand
substAlgHom
DFunLike.coe
AlgHom
AlgHom.funLike
HasSubst.expand
β€”AlgHom.ext
HasSubst.expand
HasSubst.X_pow
coe_substAlgHom
subst_comp_subst_apply
IsScalarTower.right
substAlgHom_apply
substAlgHom.congr_simp
expand_eq_expand πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
MvPolynomial.toMvPowerSeries
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
MvPolynomial.expand
β€”ext
Finsupp.ext
coeff_expand_smul
MvPolynomial.coeff_expand_smul
MvPolynomial.coeff_coe
Mathlib.Tactic.Push.not_forall_eq
coeff_expand_of_not_dvd
MvPolynomial.coeff_expand_of_not_dvd
expand_monomial πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instAddCommMonoid
Semiring.toModule
instModule
LinearMap.instFunLike
monomial
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
β€”HasSubst.X_pow
expand.eq_1
substAlgHom_monomial
monomial_eq'
Finsupp.prod.eq_1
Finsupp.prod_of_support_subset
Finsupp.support_smul
pow_zero
algebraMap_apply
Finset.prod_congr
pow_mul
expand_mul πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
β€”DFunLike.congr_fun
expand_mul_eq_comp
expand_mul_eq_comp πŸ“–mathematicalβ€”expand
AlgHom.comp
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
β€”AlgHom.ext
HasSubst.X_pow
pow_mul
substAlgHom.congr_simp
substAlgHom_apply
coe_substAlgHom
subst_comp_subst_apply
IsScalarTower.right
subst_pow
subst_X
expand_one πŸ“–mathematicalβ€”expand
one_ne_zero
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.instOne
AlgHom.id
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
β€”AlgHom.ext
one_ne_zero
HasSubst.X_pow
pow_one
substAlgHom.congr_simp
substAlgHom_apply
subst_self
expand_one_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
one_ne_zero
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.instOne
β€”one_ne_zero
expand_one
expand_subst πŸ“–mathematicalHasSubstDFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
subst
β€”substAlgHom_apply
HasSubst.expand
expand_substAlgHom
expand_substAlgHom πŸ“–mathematicalHasSubstDFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
substAlgHom
HasSubst.expand
β€”HasSubst.expand
AlgHom.comp_apply
expand_comp_substAlgHom
map_expand πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
map
AlgHom
instAlgebra
Algebra.id
AlgHom.funLike
expand
β€”substAlgHom_apply
HasSubst.X_pow
map_subst
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_X
map_frobenius_expand πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
map
frobenius
AlgHom
instAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”eq_iff_frequently_trunc'_eq
Filter.frequently_atTop
SemilatticeSup.instIsDirectedOrder
le_self_nsmul
IsOrderedAddMonoid.toAddLeftMono
Finsupp.isOrderedAddMonoid
Nat.instIsOrderedAddMonoid
zero_le
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
MvPolynomial.map_expand
expand_eq_expand
map_expand
ext
MvPolynomial.coeff_map
trunc'_map
trunc'_expand
trunc'_trunc'_pow
expChar_ne_zero
MvPolynomial.coe_pow
MvPolynomial.map_frobenius_expand
trunc'_expand_trunc'
map_iterateFrobenius_expand πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
map
iterateFrobenius
AlgHom
instAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
pow_ne_zero
Nat.instMonoidWithZero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instSemiring
Nat.instLinearOrder
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Nat.instCanonicallyOrderedAdd
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_ne_zero
isReduced_of_noZeroDivisors
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
iterateFrobenius_zero
pow_zero
expand.congr_simp
expand_one
pow_one
pow_succ
pow_mul
map_frobenius_expand
pow_succ'
iterateFrobenius.congr_simp
add_comm
iterateFrobenius_add
iterateFrobenius_one
order_expand πŸ“–mathematicalβ€”order
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
MvPowerSeries
instSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
ENat
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
order_zero
nsmul_eq_mul
ENat.mul_top
Nat.cast_zero
eq_of_le_of_ge
exists_coeff_ne_zero_and_order
ne_zero_iff_order_finite
map_nsmul
AddMonoidHom.instAddMonoidHomClass
Nat.cast_mul
order_le
coeff_expand_smul
le_order
Finsupp.ext
coeff_of_lt_order
lt_of_mul_lt_mul_left'
contravariant_lt_of_covariant_le
CanonicallyOrderedAdd.toMulLeftMono
Mathlib.Tactic.Push.not_forall_eq
coeff_expand_of_not_dvd
support_expand πŸ“–mathematicalβ€”Function.support
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
Set.image
Finsupp.instNatSMul
Nat.instAddMonoid
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
support_expand_subset
coeff_apply
coeff_expand_smul
Function.mem_support
support_expand_subset πŸ“–mathematicalβ€”Set
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Set.instHasSubset
Function.support
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
instSemiring
CommSemiring.toSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
Set.image
Finsupp.instNatSMul
Nat.instAddMonoid
β€”by_contra
coeff_expand_of_not_dvd
Finsupp.ext
coeff_apply
coeff_expand_smul
Function.mem_support
trunc'_expand πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
MvPowerSeries
MvPolynomial
CommRing.toCommSemiring
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
AddMonoidHom.instFunLike
trunc'
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instNatSMul
Nat.instAddMonoid
AlgHom
instSemiring
instAlgebra
Algebra.id
AlgHom.funLike
expand
MvPolynomial.algebra
MvPolynomial.expand
β€”MvPolynomial.ext
Finsupp.ext
Nat.instCanonicallyOrderedAdd
coeff_trunc'
nsmul_le_nsmul_right
IsOrderedAddMonoid.toAddLeftMono
Finsupp.isOrderedAddMonoid
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
coeff_expand_smul
MvPolynomial.coeff_expand_smul
Finsupp.coe_le_coe
Mathlib.Tactic.Push.not_forall_eq
MvPolynomial.coeff_expand_of_not_dvd
coeff_expand_of_not_dvd
trunc'_expand_trunc' πŸ“–mathematicalFinsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instLE
DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.expand
AddMonoidHom
MvPowerSeries
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddMonoidHom.instFunLike
trunc'
Finsupp.instNatSMul
Nat.instAddMonoid
MvPolynomial.toMvPowerSeries
β€”expand_eq_expand
trunc'_expand
trunc'_trunc'

MvPowerSeries.HasSubst

Theorems

NameKindAssumesProvesValidatesDepends On
expand πŸ“–mathematicalMvPowerSeries.HasSubstDFunLike.coe
AlgHom
MvPowerSeries
CommRing.toCommSemiring
MvPowerSeries.instSemiring
CommSemiring.toSemiring
MvPowerSeries.instAlgebra
Algebra.id
AlgHom.funLike
MvPowerSeries.expand
β€”comp
X_pow

---

← Back to Index