Documentation Verification Report

Inverse

πŸ“ Source: Mathlib/RingTheory/MvPowerSeries/Inverse.lean

Statistics

MetricCount
DefinitionsinstInv, instInvOneClass, inv, aux, invOfUnit
5
TheoremsC_inv, X_inv, coeff_inv, coeff_invOfUnit, coeff_inv_aux, constantCoeff_inv, constantCoeff_invOfUnit, eq_inv_iff_mul_eq_one, eq_mul_inv_iff_mul_eq, instIsLocalRing, invOfUnit_eq, invOfUnit_eq', invOfUnit_mul, inv_eq_iff_mul_eq_one, inv_eq_zero, inv_mul_cancel, isUnit_iff_constantCoeff, isLocalHom, mul_invOfUnit, mul_inv_cancel, mul_inv_rev, smul_inv, zero_inv
23
Total28

MvPowerSeries

Definitions

NameCategoryTheorems
instInv πŸ“–CompOp
15 mathmath: zero_inv, eq_inv_iff_mul_eq_one, inv_eq_iff_mul_eq_one, constantCoeff_inv, coeff_inv, inv_mul_cancel, C_inv, inv_eq_zero, X_inv, mul_inv_cancel, invOfUnit_eq', eq_mul_inv_iff_mul_eq, invOfUnit_eq, mul_inv_rev, smul_inv
instInvOneClass πŸ“–CompOpβ€”
inv πŸ“–CompOpβ€”
invOfUnit πŸ“–CompOp
6 mathmath: constantCoeff_invOfUnit, invOfUnit_mul, coeff_invOfUnit, mul_invOfUnit, invOfUnit_eq', invOfUnit_eq

Theorems

NameKindAssumesProvesValidatesDepends On
C_inv πŸ“–mathematicalβ€”MvPowerSeries
instInv
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instSemiring
RingHom.instFunLike
C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”eq_or_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero_inv
inv_zero
inv_eq_iff_mul_eq_one
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
inv_mul_cancelβ‚€
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
X_inv πŸ“–mathematicalβ€”MvPowerSeries
instInv
X
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”inv_eq_zero
constantCoeff_X
coeff_inv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
instInv
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
Finsupp.instDecidableEq
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
RingHom
instSemiring
RingHom.instFunLike
constantCoeff
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Finset.sum
Finset.HasAntidiagonal.antidiagonal
Finsupp.instAddMonoid
Nat.instAddMonoid
Finsupp.instHasAntidiagonal
Preorder.toLT
Finsupp.preorder
Nat.instPreorder
Finsupp.decidableLT
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
NonUnitalNonAssocSemiring.toMulZeroClass
β€”coeff_inv_aux
coeff_invOfUnit πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
invOfUnit
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
Finsupp.instDecidableEq
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units
Units.instInv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Finset.sum
Finset.HasAntidiagonal.antidiagonal
Finsupp.instAddMonoid
Nat.instAddMonoid
Finsupp.instHasAntidiagonal
Preorder.toLT
Finsupp.preorder
Nat.instPreorder
Finsupp.decidableLT
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Nat.instCanonicallyOrderedAdd
Finset.sum_congr
coeff_inv_aux
coeff_inv_aux πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries
instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModule
Semiring.toModule
LinearMap.instFunLike
coeff
inv.aux
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finsupp.instZero
Finsupp.instDecidableEq
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Finset.sum
Finset.HasAntidiagonal.antidiagonal
Finsupp.instAddMonoid
Nat.instAddMonoid
Finsupp.instHasAntidiagonal
Preorder.toLT
Finsupp.preorder
Nat.instPreorder
Finsupp.decidableLT
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Nat.instCanonicallyOrderedAdd
inv.aux.eq_1
constantCoeff_inv πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
constantCoeff
instInv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”coeff_zero_eq_constantCoeff_apply
Nat.instCanonicallyOrderedAdd
coeff_inv
constantCoeff_invOfUnit πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
Ring.toSemiring
RingHom.instFunLike
constantCoeff
invOfUnit
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Units
Units.instInv
β€”coeff_zero_eq_constantCoeff_apply
Nat.instCanonicallyOrderedAdd
coeff_invOfUnit
eq_inv_iff_mul_eq_one πŸ“–mathematicalβ€”MvPowerSeries
instInv
instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instOne
β€”eq_mul_inv_iff_mul_eq
one_mul
eq_mul_inv_iff_mul_eq πŸ“–mathematicalβ€”MvPowerSeries
instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instInv
β€”mul_assoc
inv_mul_cancel
mul_one
mul_inv_cancel
instIsLocalRing πŸ“–mathematicalβ€”IsLocalRing
MvPowerSeries
instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”IsLocalRing.of_isUnit_or_isUnit_one_sub_self
instNontrivial
IsLocalRing.toNontrivial
IsLocalRing.isUnit_or_isUnit_one_sub_self
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
mul_invOfUnit
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
invOfUnit_eq πŸ“–mathematicalβ€”invOfUnit
DivisionRing.toRing
Field.toDivisionRing
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
DivisionSemiring.toSemiring
RingHom.instFunLike
constantCoeff
instInv
β€”β€”
invOfUnit_eq' πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
constantCoeff
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
invOfUnit
DivisionRing.toRing
Field.toDivisionRing
instInv
β€”Units.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
invOfUnit_eq
Units.ext_iff
invOfUnit_mul πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
Ring.toSemiring
RingHom.instFunLike
constantCoeff
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instMul
invOfUnit
instOne
β€”mul_cancel_right_mem_nonZeroDivisors
mem_nonZeroDivisors_of_constantCoeff
constantCoeff_invOfUnit
IsUnit.mem_nonZeroDivisors
Units.isUnit
mul_assoc
one_mul
mul_invOfUnit
mul_one
inv_eq_iff_mul_eq_one πŸ“–mathematicalβ€”MvPowerSeries
instInv
instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instOne
β€”eq_inv_iff_mul_eq_one
inv_eq_zero πŸ“–mathematicalβ€”MvPowerSeries
instInv
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
constantCoeff
β€”constantCoeff_inv
ext
Nat.instCanonicallyOrderedAdd
coeff_inv
inv_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
neg_zero
MulZeroClass.zero_mul
inv_mul_cancel πŸ“–mathematicalβ€”MvPowerSeries
instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instInv
instOne
β€”mul_comm
mul_inv_cancel
isUnit_iff_constantCoeff πŸ“–mathematicalβ€”IsUnit
MvPowerSeries
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Ring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
constantCoeff
β€”IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_invOfUnit
invOfUnit_mul
mul_invOfUnit πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
instSemiring
Ring.toSemiring
RingHom.instFunLike
constantCoeff
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instMul
invOfUnit
instOne
β€”ext
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
constantCoeff_invOfUnit
Units.mul_inv
Finset.HasAntidiagonal.mem_antidiagonal
zero_add
coeff_one
coeff_mul
Finset.insert_erase
Finset.sum_insert
Finset.notMem_erase
coeff_zero_eq_constantCoeff_apply
Nat.instCanonicallyOrderedAdd
coeff_invOfUnit
neg_mul
mul_neg
Units.mul_inv_cancel_left
not_lt_of_ge
le_rfl
add_comm
sub_eq_add_neg
sub_eq_zero
Finset.sum_congr
Finset.mem_erase
lt_add_of_pos_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
Finsupp.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Finsupp.isOrderedAddMonoid
Nat.instIsOrderedAddMonoid
pos_iff_ne_zero
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
Nat.instOrderedSub
mul_inv_cancel πŸ“–mathematicalβ€”MvPowerSeries
instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instInv
instOne
β€”invOfUnit_eq
mul_invOfUnit
mul_inv_rev πŸ“–mathematicalβ€”MvPowerSeries
instInv
instMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”inv_eq_zero
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsDomain.to_noZeroDivisors
Field.isDomain
MulZeroClass.mul_zero
MulZeroClass.zero_mul
inv_eq_iff_mul_eq_one
mul_assoc
inv_mul_cancel
mul_one
smul_inv πŸ“–mathematicalβ€”MvPowerSeries
instInv
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
instSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebra
Algebra.id
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”smul_eq_C_mul
mul_comm
mul_inv_rev
C_inv
zero_inv πŸ“–mathematicalβ€”MvPowerSeries
instInv
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”inv_eq_zero
constantCoeff_zero

MvPowerSeries.inv

Definitions

NameCategoryTheorems
aux πŸ“–CompOp
1 mathmath: MvPowerSeries.coeff_inv_aux

MvPowerSeries.map

Theorems

NameKindAssumesProvesValidatesDepends On
isLocalHom πŸ“–mathematicalβ€”IsLocalHom
MvPowerSeries
RingHom
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
MvPowerSeries.map
β€”MvPowerSeries.isUnit_constantCoeff
Units.isUnit
isUnit_of_map_unit
MvPowerSeries.constantCoeff_map
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
MvPowerSeries.mul_invOfUnit

---

← Back to Index