Documentation Verification Report

PiTopology

πŸ“ Source: Mathlib/RingTheory/MvPowerSeries/PiTopology.lean

Statistics

MetricCount
DefinitionsinstTopologicalSpace, instUniformSpace
2
Theoremsas_tsum, continuous_C, continuous_coeff, continuous_constantCoeff, denseRange_toMvPowerSeries, hasSum_iff_hasSum_coeff, hasSum_of_monomials_self, instCompleteSpace, instContinuousSMul, instIsTopologicalRing, instIsTopologicalSemiring, instIsUniformAddGroup, instT0Space, instT2Space, instTopologicalSpace_mono, isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, isTopologicallyNilpotent_of_constantCoeff_isNilpotent, isTopologicallyNilpotent_of_constantCoeff_zero, multipliable_one_add_of_tendsto_order_atTop_nhds_top, multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top, one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, summable_iff_summable_coeff, summable_of_tendsto_order_atTop_nhds_top, summable_of_tendsto_weightedOrder_atTop_nhds_top, summable_pow_of_constantCoeff_eq_zero, summable_prod_of_tendsto_order_atTop_nhds_top, summable_prod_of_tendsto_weightedOrder_atTop_nhds_top, tendsto_iff_coeff_tendsto, tendsto_trunc'_atTop, tendsto_trunc_atTop, tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, uniformContinuous_coeff, variables_tendsto_zero
33
Total35

MvPowerSeries.WithPiTopology

Definitions

NameCategoryTheorems
instTopologicalSpace πŸ“–CompOp
46 mathmath: tendsto_trunc_atTop, instIsTopologicalRing, MvPowerSeries.evalβ‚‚Hom_eq_extend, isTopologicallyNilpotent_iff_constantCoeff_isNilpotent, summable_of_tendsto_order_atTop_nhds_top, MvPowerSeries.continuous_aeval, multipliable_one_add_of_tendsto_order_atTop_nhds_top, MvPowerSeries.continuous_evalβ‚‚, instContinuousSMul, continuous_coeff, MvPowerSeries.LinearTopology.isTopologicallyNilpotent_iff_constantCoeff, as_tsum, MvPowerSeries.LinearTopology.instIsLinearTopologyMulOpposite, hasSum_iff_hasSum_coeff, MvPowerSeries.LinearTopology.isTopologicallyNilpotent_of_constantCoeff, summable_pow_of_constantCoeff_eq_zero, MvPowerSeries.continuous_subst, MvPolynomial.toMvPowerSeries_isDenseInducing, instT2Space, one_sub_mul_tsum_pow_of_constantCoeff_eq_zero, MvPowerSeries.hasSubst_iff_hasEval_of_discreteTopology, MvPowerSeries.LinearTopology.instIsLinearTopologyOfMulOpposite, summable_prod_of_tendsto_weightedOrder_atTop_nhds_top, tsum_pow_mul_one_sub_of_constantCoeff_eq_zero, MvPowerSeries.coeff_zero_iff, hasSum_of_monomials_self, denseRange_toMvPowerSeries, PowerSeries.HasSubst.hasEval, summable_prod_of_tendsto_order_atTop_nhds_top, summable_iff_summable_coeff, MvPowerSeries.HasEval.X, tendsto_trunc'_atTop, isTopologicallyNilpotent_of_constantCoeff_isNilpotent, instTopologicalSpace_mono, isTopologicallyNilpotent_of_constantCoeff_zero, MvPowerSeries.HasSubst.hasEval, instIsTopologicalSemiring, variables_tendsto_zero, instT0Space, tendsto_iff_coeff_tendsto, PowerSeries.hasSubst_iff_hasEval_of_discreteTopology, continuous_constantCoeff, MvPowerSeries.LinearTopology.hasBasis_nhds_zero, summable_of_tendsto_weightedOrder_atTop_nhds_top, continuous_C, multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top
instUniformSpace πŸ“–CompOp
8 mathmath: MvPowerSeries.subst_eq_evalβ‚‚, MvPolynomial.toMvPowerSeries_isUniformInducing, MvPowerSeries.substAlgHom_eq_aeval, uniformContinuous_coeff, instIsUniformAddGroup, MvPowerSeries.uniformContinuous_evalβ‚‚, PowerSeries.substAlgHom_eq_aeval, instCompleteSpace

Theorems

NameKindAssumesProvesValidatesDepends On
as_tsum πŸ“–mathematicalβ€”tsum
MvPowerSeries
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
MvPowerSeries.instModule
LinearMap.instFunLike
MvPowerSeries.monomial
MvPowerSeries.coeff
SummationFilter.unconditional
β€”HasSum.tsum_eq
instT2Space
SummationFilter.instNeBotUnconditional
hasSum_of_monomials_self
continuous_C πŸ“–mathematicalβ€”Continuous
MvPowerSeries
instTopologicalSpace
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
RingHom.instFunLike
MvPowerSeries.C
β€”tendsto_iff_coeff_tendsto
MvPowerSeries.coeff_C
Filter.tendsto_id
tendsto_const_nhds
continuous_coeff πŸ“–mathematicalβ€”Continuous
MvPowerSeries
instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
β€”continuous_pi_iff
continuous_id
continuous_constantCoeff πŸ“–mathematicalβ€”Continuous
MvPowerSeries
instTopologicalSpace
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
β€”continuous_coeff
denseRange_toMvPowerSeries πŸ“–mathematicalβ€”DenseRange
MvPowerSeries
instTopologicalSpace
MvPolynomial
MvPolynomial.toMvPowerSeries
β€”mem_closure_of_tendsto
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
tendsto_trunc'_atTop
Filter.Eventually.of_forall
Set.mem_range_self
hasSum_iff_hasSum_coeff πŸ“–mathematicalβ€”HasSum
MvPowerSeries
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
DFunLike.coe
LinearMap
RingHom.id
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
β€”Finset.sum_congr
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
tendsto_iff_coeff_tendsto
hasSum_of_monomials_self πŸ“–mathematicalβ€”HasSum
MvPowerSeries
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toModule
MvPowerSeries.instModule
LinearMap.instFunLike
MvPowerSeries.monomial
MvPowerSeries.coeff
SummationFilter.unconditional
β€”Pi.hasSum
MvPowerSeries.coeff_monomial_same
hasSum_single
MvPowerSeries.coeff_monomial_ne
SummationFilter.instLeAtTopUnconditional
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
MvPowerSeries
instUniformSpace
β€”Pi.complete
instContinuousSMul πŸ“–mathematicalβ€”ContinuousSMul
MvPowerSeries
Algebra.toSMul
MvPowerSeries.instSemiring
MvPowerSeries.instAlgebra
instTopologicalSpace
β€”instContinuousSMulForall
instIsTopologicalRing πŸ“–mathematicalβ€”IsTopologicalRing
MvPowerSeries
instTopologicalSpace
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MvPowerSeries.instRing
β€”instIsTopologicalSemiring
IsTopologicalRing.toIsTopologicalSemiring
continuous_pi
Continuous.comp
ContinuousNeg.continuous_neg
IsTopologicalRing.toContinuousNeg
continuous_coeff
instIsTopologicalSemiring πŸ“–mathematicalβ€”IsTopologicalSemiring
MvPowerSeries
instTopologicalSpace
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
β€”continuous_pi
Continuous.comp
continuous_add
IsTopologicalSemiring.toContinuousAdd
Continuous.prodMk
Continuous.fst'
continuous_coeff
Continuous.snd'
continuous_finset_sum
continuous_mul
IsTopologicalSemiring.toContinuousMul
instIsUniformAddGroup πŸ“–mathematicalβ€”IsUniformAddGroup
MvPowerSeries
instUniformSpace
MvPowerSeries.instAddGroup
β€”Pi.instIsUniformAddGroup
instT0Space πŸ“–mathematicalβ€”T0Space
MvPowerSeries
instTopologicalSpace
β€”Pi.instT0Space
instT2Space πŸ“–mathematicalβ€”T2Space
MvPowerSeries
instTopologicalSpace
β€”Pi.t2Space
instTopologicalSpace_mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
MvPowerSeries
instTopologicalSpace
β€”le_imp_le_of_le_of_le
iInf_mono
induced_mono
le_refl
iInf_le
isTopologicallyNilpotent_iff_constantCoeff_isNilpotent πŸ“–mathematicalβ€”IsTopologicallyNilpotent
MvPowerSeries
Semiring.toMonoidWithZero
MvPowerSeries.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instTopologicalSpace
IsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
β€”IsTopologicallyNilpotent.map
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
continuous_constantCoeff
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
nhds_discrete
isTopologicallyNilpotent_of_constantCoeff_isNilpotent
isTopologicallyNilpotent_of_constantCoeff_isNilpotent πŸ“–mathematicalIsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
RingHom
MvPowerSeries
MvPowerSeries.instSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
IsTopologicallyNilpotent
instTopologicalSpace
β€”tendsto_atTop_of_eventually_const
MvPowerSeries.coeff_eq_zero_of_constantCoeff_nilpotent
isTopologicallyNilpotent_of_constantCoeff_zero πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
CommSemiring.toSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Filter.Tendsto
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
MvPowerSeries.instZero
β€”isTopologicallyNilpotent_of_constantCoeff_isNilpotent
IsNilpotent.zero
multipliable_one_add_of_tendsto_order_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
MvPowerSeries.order
CommSemiring.toSemiring
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Multipliable
MvPowerSeries
CommSemiring.toCommMonoid
MvPowerSeries.instCommSemiring
instTopologicalSpace
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
MvPowerSeries.instOne
SummationFilter.unconditional
β€”multipliable_one_add_of_summable_prod
summable_prod_of_tendsto_order_atTop_nhds_top
multipliable_one_add_of_tendsto_weightedOrder_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
MvPowerSeries.weightedOrder
CommSemiring.toSemiring
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Multipliable
MvPowerSeries
CommSemiring.toCommMonoid
MvPowerSeries.instCommSemiring
instTopologicalSpace
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
MvPowerSeries.instOne
SummationFilter.unconditional
β€”multipliable_one_add_of_summable_prod
summable_prod_of_tendsto_weightedOrder_atTop_nhds_top
one_sub_mul_tsum_pow_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
Ring.toSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MvPowerSeries.instMul
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
MvPowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instOne
tsum
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SummationFilter.unconditional
β€”Summable.one_sub_mul_tsum_pow
instIsTopologicalRing
instT2Space
summable_pow_of_constantCoeff_eq_zero
summable_iff_summable_coeff πŸ“–mathematicalβ€”Summable
MvPowerSeries
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
DFunLike.coe
LinearMap
RingHom.id
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
β€”β€”
summable_of_tendsto_order_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
MvPowerSeries.order
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Summable
MvPowerSeries
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
β€”summable_of_tendsto_weightedOrder_atTop_nhds_top
summable_of_tendsto_weightedOrder_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
MvPowerSeries.weightedOrder
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Summable
MvPowerSeries
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
SummationFilter.unconditional
β€”isEmpty_or_nonempty
summable_empty
summable_iff_summable_coeff
SemilatticeSup.instIsDirectedOrder
summable_of_finite_support
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
Set.Finite.subset
Set.finite_Iic
Mathlib.Tactic.Contrapose.contraposeβ‚‚
MvPowerSeries.coeff_eq_zero_of_lt_weightedOrder
LT.lt.le
summable_pow_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Summable
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SummationFilter.unconditional
β€”summable_of_tendsto_order_atTop_nhds_top
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
lt_of_lt_of_le
LT.lt.trans_le
ENat.coe_lt_coe
GE.ge.le
nsmul_eq_mul
ENat.self_le_mul_right
MvPowerSeries.order_ne_zero_iff_constCoeff_eq_zero
MvPowerSeries.le_order_pow
summable_prod_of_tendsto_order_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
MvPowerSeries.order
CommSemiring.toSemiring
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Summable
MvPowerSeries
Finset
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
Finset.prod
CommSemiring.toCommMonoid
MvPowerSeries.instCommSemiring
SummationFilter.unconditional
β€”summable_prod_of_tendsto_weightedOrder_atTop_nhds_top
summable_prod_of_tendsto_weightedOrder_atTop_nhds_top πŸ“–mathematicalFilter.Tendsto
ENat
MvPowerSeries.weightedOrder
CommSemiring.toSemiring
Filter.atTop
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
nhds
ENat.instTopologicalSpace
Top.top
instTopENat
Summable
MvPowerSeries
Finset
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instTopologicalSpace
Finset.prod
CommSemiring.toCommMonoid
MvPowerSeries.instCommSemiring
SummationFilter.unconditional
β€”isEmpty_or_nonempty
Summable.of_finite
Finite.of_fintype
SummationFilter.instHasSupportOfLeAtTop
SummationFilter.instLeAtTopUnconditional
summable_iff_summable_coeff
summable_of_finite_support
SemilatticeSup.instIsDirectedOrder
Set.Finite.subset
Finset.finite_toSet
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Set.not_subset
MvPowerSeries.coeff_eq_zero_of_lt_weightedOrder
LT.lt.trans_le
not_lt
Set.mem_Iio
le_trans
Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
MvPowerSeries.le_weightedOrder_prod
Finset.coe_powerset
Finset.coe_Iio
tendsto_iff_coeff_tendsto πŸ“–mathematicalβ€”Filter.Tendsto
MvPowerSeries
nhds
instTopologicalSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
β€”nhds_pi
Filter.tendsto_pi
tendsto_trunc'_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
MvPowerSeries
MvPolynomial.toMvPowerSeries
DFunLike.coe
AddMonoidHom
MvPolynomial
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
MvPowerSeries.instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
AddMonoidHom.instFunLike
MvPowerSeries.trunc'
Filter.atTop
Finsupp.preorder
Nat.instPreorder
nhds
instTopologicalSpace
β€”tendsto_iff_coeff_tendsto
tendsto_atTop_of_eventually_const
Nat.instCanonicallyOrderedAdd
MvPowerSeries.coeff_trunc'
tendsto_trunc_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
MvPowerSeries
MvPolynomial.toMvPowerSeries
DFunLike.coe
AddMonoidHom
MvPolynomial
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
MvPowerSeries.instAddMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
AddMonoidHom.instFunLike
MvPowerSeries.trunc
Filter.atTop
Finsupp.preorder
Nat.instPreorder
nhds
instTopologicalSpace
β€”tendsto_iff_coeff_tendsto
tendsto_atTop_of_eventually_const
MvPolynomial.coeff_coe
Nat.instCanonicallyOrderedAdd
MvPowerSeries.coeff_trunc
lt_of_lt_of_le
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
Finsupp.instIsLeftCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Finsupp.isOrderedAddMonoid
Nat.instIsOrderedAddMonoid
IsOrderedCancelAddMonoid.toAddLeftReflectLT
Finsupp.isOrderedCancelAddMonoid
Nat.instIsOrderedCancelAddMonoid
zero_le
Finsupp.instCanonicallyOrderedAddOfAddLeftMono
Nat.instOrderedSub
Finsupp.single_eq_same
Nat.instZeroLEOneClass
tsum_pow_mul_one_sub_of_constantCoeff_eq_zero πŸ“–mathematicalDFunLike.coe
RingHom
MvPowerSeries
Semiring.toNonAssocSemiring
MvPowerSeries.instSemiring
Ring.toSemiring
RingHom.instFunLike
MvPowerSeries.constantCoeff
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MvPowerSeries.instMul
tsum
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SummationFilter.unconditional
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
MvPowerSeries.instAddGroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
MvPowerSeries.instOne
β€”Summable.tsum_pow_mul_one_sub
instIsTopologicalRing
instT2Space
summable_pow_of_constantCoeff_eq_zero
uniformContinuous_coeff πŸ“–mathematicalβ€”UniformContinuous
MvPowerSeries
instUniformSpace
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MvPowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPowerSeries.instModule
Semiring.toModule
LinearMap.instFunLike
MvPowerSeries.coeff
β€”uniformContinuous_pi
uniformContinuous_id
variables_tendsto_zero πŸ“–mathematicalβ€”Filter.Tendsto
MvPowerSeries
MvPowerSeries.X
Filter.cofinite
nhds
instTopologicalSpace
MvPowerSeries.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”MvPowerSeries.coeff_X
tendsto_nhds_of_eventually_eq
Filter.mp_mem
Filter.eventually_cofinite_ne
Filter.univ_mem'
Filter.Eventually.of_forall

---

← Back to Index