Documentation Verification Report

NoetherNormalization

📁 Source: Mathlib/RingTheory/NoetherNormalization.lean

Statistics

MetricCount
DefinitionsT1
1
Theoremsexists_finite_inj_algHom_of_fg, exists_integral_inj_algHom_of_fg, exists_integral_inj_algHom_of_quotient
3
Total4

NoetherNormalization

Definitions

NameCategoryTheorems
T1 📖CompOp

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finite_inj_algHom_of_fg 📖mathematicalMvPolynomial
Semifield.toCommSemiring
Field.toSemifield
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
AlgHom.Finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MvPolynomial.instCommRingMvPolynomial
exists_integral_inj_algHom_of_fg
IsScalarTower.algebraMap_eq
IsScalarTower.of_algHom
RingHom.algebraMap_toAlgebra'
RingHom.IsIntegral.to_finite
RingHom.FiniteType.of_comp_finiteType
RingHom.finiteType_algebraMap
exists_integral_inj_algHom_of_fg 📖mathematicalMvPolynomial
Semifield.toCommSemiring
Field.toSemifield
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
CommRing.toCommSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
RingHom.IsIntegral
MvPolynomial.instCommRingMvPolynomial
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
AlgHom.toRingHom
Algebra.FiniteType.iff_quotient_mvPolynomial''
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instIsTwoSidedKer
exists_integral_inj_algHom_of_quotient
RingHom.ker_ne_top
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
EquivLike.toEmbeddingLike
RingHom.IsIntegral.trans
RingHom.isIntegral_of_surjective
AlgEquiv.surjective
exists_integral_inj_algHom_of_quotient 📖mathematicalMvPolynomial
Semifield.toCommSemiring
Field.toSemifield
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
MvPolynomial.commSemiring
Ideal.instHasQuotient_1
MvPolynomial.instCommRingMvPolynomial
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
Ideal.Quotient.semiring
MvPolynomial.algebra
Algebra.id
Ideal.instAlgebraQuotient
AlgHom.funLike
RingHom.IsIntegral
Ideal.Quotient.instRingQuotient
AlgHom.toRingHom
le_rfl
Ideal.instIsTwoSided_1
MvPolynomial.eq_C_of_isEmpty
Fin.isEmpty'
sub_ne_zero_of_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
isUnit_iff_exists
Ne.isUnit
MvPolynomial.smul_eq_C_mul
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.C_1
Ideal.eq_top_iff_one
Submodule.smul_of_tower_mem
IsScalarTower.right
Ideal.Quotient.eq
RingHom.isIntegral_of_surjective
Ideal.Quotient.mkₐ_surjective
Ideal.Quotient.mk_bijective_iff_eq_bot
Submodule.exists_mem_ne_zero_of_ne_bot
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instIsTwoSidedKer
Ideal.Quotient.nontrivial_iff
RingHom.ker_ne_top
AlgHom.ext
Ideal.kerLiftAlg_injective
AlgHom.coe_comp
RingHom.IsIntegral.trans
RingHom.IsIntegral.tower_top

---

← Back to Index