Documentation Verification Report

OfPrime

📁 Source: Mathlib/RingTheory/Noetherian/OfPrime.lean

Statistics

MetricCount
Definitions0
TheoremsisOka_fg, of_prime, of_prime_ne_bot
3
Total3

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isOka_fg 📖mathematicalIsOka
CommRing.toCommSemiring
FG
CommSemiring.toSemiring
Finset.coe_singleton
span_singleton_one
Submodule.fg_iff_exists_fin_generating_family
mem_span_singleton_sup
sup_comm
submodule_span_eq
mem_span_range_self
le_antisymm
Finset.coe_union
Finset.coe_image
Finset.coe_univ
Set.image_univ
Set.image_congr
span_union
mem_colon_span_singleton
mul_comm
Submodule.mem_sup
mem_span_range_iff_exists_fun
mem_sup_left
sum_mem
mul_mem_left
smul_eq_mul
Set.range_smul
Algebra.to_smulCommClass
Submodule.span_smul
Set.smul_mem_smul_set
add_mem_iff_right
add_comm
Finset.sum_mul
Finset.sum_add_distrib
Finset.sum_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.mul_assoc_rev
add_zero

IsNoetherianRing

Theorems

NameKindAssumesProvesValidatesDepends On
of_prime 📖mathematicalIdeal.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
IsNoetherianRingIdeal.IsOka.forall_of_forall_prime'
Ideal.isOka_fg
DirectedOn.exists_mem_subset_of_finset_subset_biUnion
IsChain.directedOn
instReflLe
Submodule.mem_sSup_of_directed
Ideal.subset_span
le_antisymm
le_sSup
Ideal.span_le
of_prime_ne_bot 📖mathematicalIdeal.FG
CommSemiring.toSemiring
CommRing.toCommSemiring
IsNoetherianRingof_prime
eq_or_ne
Submodule.fg_bot

---

← Back to Index