Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/NonUnitalSubring/Basic.lean

Statistics

MetricCount
DefinitionseqLocus, fintypeRange, range, rangeRestrict, center, instNonUnitalCommRing, centerCongr, centerToMulOpposite, closure, closureNonUnitalCommRingOfComm, comap, decidableMemCenter, equivMapOfInjective, gi, instBot, instCompleteLattice, instInfSet, instInhabited, instMin, instTop, map, prod, prodEquiv, topEquiv, nonUnitalSubringCongr, ofLeftInverse'
26
Theoremsclosure_preimage_le, coe_range, coe_rangeRestrict, eqLocus_same, eqOn_set_closure, eq_of_eqOn_set_dense, eq_of_eqOn_set_top, map_closure, map_range, mem_eqLocus, mem_range, mem_range_self, rangeRestrict_surjective, range_eq_map, range_eq_top, range_eq_top_of_surjective, centerCongr_apply_coe, centerCongr_symm_apply_coe, centerToMulOpposite_apply_coe, centerToMulOpposite_symm_apply_coe, center_eq_top, center_toNonUnitalSubsemiring, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_le, closure_mono, closure_preimage_le, closure_sUnion, closure_union, closure_univ, coe_bot, coe_center, coe_comap, coe_equivMapOfInjective_apply, coe_iInf, coe_iSup_of_directed, coe_inf, coe_map, coe_prod, coe_sInf, coe_sSup_of_directedOn, coe_top, comap_comap, comap_equiv_eq_map_symm, comap_iInf, comap_inf, comap_top, eq_top_iff', gc_map_comap, list_sum_mem, map_bot, map_equiv_eq_comap_symm, map_iInf, map_iSup, map_id, map_inf, map_le_iff_le_comap, map_map, map_sup, mem_bot, mem_center_iff, mem_closure, mem_closure_iff, mem_closure_of_mem, mem_comap, mem_iInf, mem_iSup_of_directed, mem_inf, mem_map, mem_map_equiv, mem_prod, mem_sInf, mem_sSup_of_directedOn, mem_top, multiset_sum_mem, notMem_of_notMem_closure, prod_mono, prod_mono_left, prod_mono_right, prod_top, range_fst, range_snd, range_subtype, sInf_toAddSubgroup, sInf_toSubsemigroup, subset_closure, sum_mem, toAddSubgroup_eq_top, toAddSubgroup_top, toNonUnitalSubsemiring_eq_top, toNonUnitalSubsemiring_top, topEquiv_apply, topEquiv_symm_apply_coe, top_prod, top_prod_top, ofLeftInverse'_apply, ofLeftInverse'_symm_apply
101
Total127

NonUnitalRingHom

Definitions

NameCategoryTheorems
eqLocus πŸ“–CompOp
2 mathmath: eqLocus_same, mem_eqLocus
fintypeRange πŸ“–CompOpβ€”
range πŸ“–CompOp
12 mathmath: mem_range, mem_range_self, range_eq_top, coe_range, RingEquiv.ofLeftInverse'_symm_apply, range_eq_top_of_surjective, RingEquiv.ofLeftInverse'_apply, coe_rangeRestrict, rangeRestrict_surjective, NonUnitalSubring.range_subtype, range_eq_map, map_range
rangeRestrict πŸ“–CompOp
2 mathmath: coe_rangeRestrict, rangeRestrict_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
closure_preimage_le πŸ“–mathematicalβ€”NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubring.instPartialOrder
NonUnitalSubring.closure
Set.preimage
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
NonUnitalSubring.comap
instNonUnitalRingHomClass
β€”instNonUnitalRingHomClass
NonUnitalSubring.closure_le
SetLike.mem_coe
NonUnitalSubring.mem_comap
NonUnitalSubring.subset_closure
coe_range πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
NonUnitalSubring.instSetLike
range
Set.range
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
β€”β€”
coe_rangeRestrict πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
range
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubringClass.toNonUnitalNonAssocRing
NonUnitalSubring.instNonUnitalSubringClass
instFunLike
rangeRestrict
β€”NonUnitalSubring.instNonUnitalSubringClass
eqLocus_same πŸ“–mathematicalβ€”eqLocus
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
β€”SetLike.ext
eqOn_set_closure πŸ“–mathematicalSet.EqOn
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
SetLike.coe
NonUnitalSubring
NonUnitalSubring.instSetLike
NonUnitalSubring.closure
β€”NonUnitalSubring.closure_le
eq_of_eqOn_set_dense πŸ“–β€”NonUnitalSubring.closure
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
Set.EqOn
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
β€”β€”eq_of_eqOn_set_top
eqOn_set_closure
eq_of_eqOn_set_top πŸ“–β€”Set.EqOn
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
SetLike.coe
NonUnitalSubring
NonUnitalSubring.instSetLike
Top.top
NonUnitalSubring.instTop
β€”β€”ext
map_closure πŸ“–mathematicalβ€”NonUnitalSubring.map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
instNonUnitalRingHomClass
NonUnitalSubring.closure
Set.image
DFunLike.coe
β€”GaloisConnection.l_comm_of_u_comm
Set.image_preimage
instNonUnitalRingHomClass
NonUnitalSubring.gc_map_comap
GaloisInsertion.gc
map_range πŸ“–mathematicalβ€”NonUnitalSubring.map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
instNonUnitalRingHomClass
range
comp
β€”instNonUnitalRingHomClass
NonUnitalSubring.map.congr_simp
range_eq_map
NonUnitalSubring.map_map
mem_eqLocus πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
eqLocus
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
β€”β€”
mem_range πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
range
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
β€”β€”
mem_range_self πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
range
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
β€”mem_range
rangeRestrict_surjective πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
range
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubringClass.toNonUnitalNonAssocRing
NonUnitalSubring.instNonUnitalSubringClass
instFunLike
rangeRestrict
β€”NonUnitalSubring.instNonUnitalSubringClass
mem_range
range_eq_map πŸ“–mathematicalβ€”range
NonUnitalSubring.map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
instNonUnitalRingHomClass
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
β€”NonUnitalSubring.ext
instNonUnitalRingHomClass
range_eq_top πŸ“–mathematicalβ€”range
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
DFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
β€”SetLike.ext'_iff
coe_range
NonUnitalSubring.coe_top
Set.range_eq_univ
range_eq_top_of_surjective πŸ“–mathematicalDFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instFunLike
range
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
β€”range_eq_top

NonUnitalSubring

Definitions

NameCategoryTheorems
center πŸ“–CompOp
9 mathmath: centerCongr_apply_coe, mem_center_iff, center_eq_top, centerCongr_symm_apply_coe, center_toNonUnitalSubsemiring, coe_center, centerToMulOpposite_symm_apply_coe, NonUnitalSubalgebra.center_toNonUnitalSubring, centerToMulOpposite_apply_coe
centerCongr πŸ“–CompOp
2 mathmath: centerCongr_apply_coe, centerCongr_symm_apply_coe
centerToMulOpposite πŸ“–CompOp
2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
closure πŸ“–CompOp
16 mathmath: mem_closure_of_mem, NonUnitalRingHom.map_closure, closure_preimage_le, closure_empty, NonUnitalRingHom.eqOn_set_closure, closure_univ, closure_eq, closure_sUnion, closure_mono, closure_union, closure_iUnion, mem_closure_iff, subset_closure, mem_closure, NonUnitalRingHom.closure_preimage_le, closure_le
closureNonUnitalCommRingOfComm πŸ“–CompOpβ€”
comap πŸ“–CompOp
14 mathmath: prod_top, map_equiv_eq_comap_symm, closure_preimage_le, comap_top, comap_comap, map_le_iff_le_comap, top_prod, comap_equiv_eq_map_symm, mem_comap, comap_iInf, comap_inf, coe_comap, gc_map_comap, NonUnitalRingHom.closure_preimage_le
decidableMemCenter πŸ“–CompOpβ€”
equivMapOfInjective πŸ“–CompOp
1 mathmath: coe_equivMapOfInjective_apply
gi πŸ“–CompOpβ€”
instBot πŸ“–CompOp
4 mathmath: closure_empty, mem_bot, coe_bot, map_bot
instCompleteLattice πŸ“–CompOp
9 mathmath: map_iSup, mem_sSup_of_directedOn, mem_iSup_of_directed, map_sup, closure_sUnion, closure_union, coe_sSup_of_directedOn, closure_iUnion, coe_iSup_of_directed
instInfSet πŸ“–CompOp
8 mathmath: coe_sInf, coe_iInf, sInf_toSubsemigroup, mem_iInf, comap_iInf, sInf_toAddSubgroup, mem_sInf, map_iInf
instInhabited πŸ“–CompOpβ€”
instMin πŸ“–CompOp
4 mathmath: map_inf, mem_inf, comap_inf, coe_inf
instTop πŸ“–CompOp
23 mathmath: coe_top, toNonUnitalSubsemiring_eq_top, prod_top, eq_top_iff', comap_top, mem_top, topEquiv_symm_apply_coe, NonUnitalRingHom.eqLocus_same, closure_univ, center_eq_top, topEquiv_apply, toAddSubgroup_eq_top, NonUnitalRingHom.range_eq_top, top_prod, top_prod_top, toNonUnitalSubsemiring_top, NonUnitalRingHom.range_eq_top_of_surjective, NonUnitalAlgebra.to_subring_eq_top, NonUnitalAlgebra.toNonUnitalSubring_eq_top, NonUnitalAlgebra.top_toSubring, NonUnitalRingHom.range_eq_map, NonUnitalAlgebra.toNonUnitalSubring_top, toAddSubgroup_top
map πŸ“–CompOp
18 mathmath: map_inf, NonUnitalRingHom.map_closure, map_equiv_eq_comap_symm, map_iSup, map_map, map_sup, map_le_iff_le_comap, mem_map, map_bot, comap_equiv_eq_map_symm, coe_equivMapOfInjective_apply, mem_map_equiv, map_id, coe_map, gc_map_comap, NonUnitalRingHom.range_eq_map, NonUnitalRingHom.map_range, map_iInf
prod πŸ“–CompOp
8 mathmath: prod_top, top_prod, prod_mono_left, top_prod_top, prod_mono, mem_prod, prod_mono_right, coe_prod
prodEquiv πŸ“–CompOpβ€”
topEquiv πŸ“–CompOp
2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
centerCongr_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
NonUnitalSubring
instSetLike
center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
center.instNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerCongr
β€”β€”
centerCongr_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
NonUnitalSubring
instSetLike
center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
center.instNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerCongr
MulEquiv
MulEquiv.instEquivLike
MulEquiv.symm
MulEquivClass.toMulEquiv
β€”β€”
centerToMulOpposite_apply_coe πŸ“–mathematicalβ€”MulOpposite
Subsemigroup
MulOpposite.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
NonUnitalSubring
instSetLike
center
MulOpposite.instNonUnitalNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
center.instNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerToMulOpposite
MulOpposite.op
β€”β€”
centerToMulOpposite_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
MulOpposite
NonUnitalSubring
MulOpposite.instNonUnitalNonAssocRing
instSetLike
center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
center.instNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerToMulOpposite
MulOpposite.unop
MulOpposite.instMul
β€”β€”
center_eq_top πŸ“–mathematicalβ€”center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Top.top
NonUnitalSubring
instTop
β€”SetLike.coe_injective
Set.center_eq_univ
center_toNonUnitalSubsemiring πŸ“–mathematicalβ€”toNonUnitalSubsemiring
center
NonUnitalSubsemiring.center
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”β€”
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
NonUnitalSubring
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
NonUnitalSubring
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
NonUnitalSubring
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
NonUnitalSubring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
ZeroMemClass.zero_mem
NonUnitalSubring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
closure
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NegMemClass.neg_mem
NonUnitalSubringClass.toNegMemClass
Distrib.toMul
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
NonUnitalSubringClass.toNegMemClass
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
ZeroMemClass.zero_mem
NonUnitalSubring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
closure
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NegMemClass.neg_mem
NonUnitalSubringClass.toNegMemClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
NegMemClass.neg_mem
NonUnitalSubringClass.toNegMemClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
closure_induction
closure_le πŸ“–mathematicalβ€”NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_preimage_le πŸ“–mathematicalβ€”NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set.preimage
DFunLike.coe
comap
β€”closure_le
SetLike.mem_coe
mem_comap
subset_closure
closure_sUnion πŸ“–mathematicalβ€”closure
Set.sUnion
iSup
NonUnitalSubring
Set
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.instMembership
β€”GaloisConnection.l_sSup
GaloisInsertion.gc
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
NonUnitalSubring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
NonUnitalSubring
instTop
β€”closure_eq
coe_top
coe_bot πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
Bot.bot
instBot
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”NonUnitalRingHom.coe_range
Set.range_const
Zero.instNonempty
coe_center πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
center
Set.center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”β€”
coe_comap πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
comap
Set.preimage
DFunLike.coe
β€”β€”
coe_equivMapOfInjective_apply πŸ“–mathematicalDFunLike.coeNonUnitalSubring
SetLike.instMembership
instSetLike
map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubringClass.toNonUnitalNonAssocRing
instNonUnitalSubringClass
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivMapOfInjective
β€”instNonUnitalSubringClass
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_iSup_of_directed πŸ“–mathematicalDirected
NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
β€”Set.ext
mem_iSup_of_directed
coe_inf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
map
Set.image
DFunLike.coe
β€”β€”
coe_prod πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
Prod.instNonUnitalNonAssocRing
instSetLike
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
NonUnitalSubring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
Set
Set.instMembership
β€”Set.ext
mem_sSup_of_directedOn
coe_top πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
instSetLike
Top.top
instTop
Set.univ
β€”β€”
comap_comap πŸ“–mathematicalβ€”comap
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.comp
β€”NonUnitalRingHom.instNonUnitalRingHomClass
comap_equiv_eq_map_symm πŸ“–mathematicalβ€”comap
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
map
RingEquiv.symm
β€”NonUnitalRingHom.instNonUnitalRingHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
map_equiv_eq_comap_symm
comap_iInf πŸ“–mathematicalβ€”comap
iInf
NonUnitalSubring
instInfSet
β€”GaloisConnection.u_iInf
gc_map_comap
comap_inf πŸ“–mathematicalβ€”comap
NonUnitalSubring
instMin
β€”GaloisConnection.u_inf
gc_map_comap
comap_top πŸ“–mathematicalβ€”comap
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
Top.top
NonUnitalSubring
instTop
β€”GaloisConnection.u_top
NonUnitalRingHom.instNonUnitalRingHomClass
gc_map_comap
eq_top_iff' πŸ“–mathematicalβ€”Top.top
NonUnitalSubring
instTop
SetLike.instMembership
instSetLike
β€”eq_top_iff
mem_top
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
NonUnitalSubring
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
list_sum_mem πŸ“–mathematicalNonUnitalSubring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”list_sum_mem
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
map_bot πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
Bot.bot
NonUnitalSubring
instBot
β€”GaloisConnection.l_bot
NonUnitalRingHom.instNonUnitalRingHomClass
gc_map_comap
map_equiv_eq_comap_symm πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
comap
RingEquiv.symm
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
Equiv.image_eq_preimage_symm
map_iInf πŸ“–mathematicalDFunLike.coemap
iInf
NonUnitalSubring
instInfSet
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_iSup πŸ“–mathematicalβ€”map
iSup
NonUnitalSubring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_id πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.id
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
Set.image_id
map_inf πŸ“–mathematicalDFunLike.coemap
NonUnitalSubring
instMin
β€”SetLike.coe_injective
Set.image_inter
map_le_iff_le_comap πŸ“–mathematicalβ€”NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.comp
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
Set.image_image
map_sup πŸ“–mathematicalβ€”map
NonUnitalSubring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_map_comap
mem_bot πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
Bot.bot
instBot
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”coe_bot
Set.mem_singleton_iff
mem_center_iff πŸ“–mathematicalβ€”NonUnitalSubring
NonUnitalRing.toNonUnitalNonAssocRing
SetLike.instMembership
instSetLike
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”Subsemigroup.mem_center_iff
mem_closure πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_iff πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
closure
AddSubgroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
AddSubgroup.instSetLike
AddSubgroup.closure
SetLike.coe
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Subsemigroup.instSetLike
Subsemigroup.closure
β€”closure_induction
AddSubgroup.subset_closure
Subsemigroup.subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
AddSubgroup.instAddSubgroupClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
AddSubgroup.closure_inductionβ‚‚
MulMemClass.mul_mem
Subsemigroup.instMulMemClass
MulZeroClass.zero_mul
MulZeroClass.mul_zero
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
neg_mul
mul_neg
AddSubgroup.closure_induction
Subsemigroup.closure_induction
subset_closure
NonUnitalSubsemiringClass.mulMemClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNegMemClass
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
NonUnitalSubring
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_comap πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
comap
DFunLike.coe
β€”β€”
mem_iInf πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_of_directed πŸ“–mathematicalDirected
NonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”Subsemigroup.coe_iSup_of_directed
AddSubgroup.coe_iSup_of_directed
iSup_le
Set.mem_iUnion
le_iSup
mem_inf πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_map πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
map
DFunLike.coe
β€”Set.mem_image
mem_map_equiv πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
map
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
RingEquiv.symm
β€”Set.mem_image_equiv
mem_prod πŸ“–mathematicalβ€”NonUnitalSubring
Prod.instNonUnitalNonAssocRing
SetLike.instMembership
instSetLike
prod
β€”β€”
mem_sInf πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
NonUnitalSubring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
mem_top πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
multiset_sum_mem πŸ“–mathematicalNonUnitalSubring
SetLike.instMembership
instSetLike
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”multiset_sum_mem
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
notMem_of_notMem_closure πŸ“–mathematicalNonUnitalSubring
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
prod_mono πŸ“–mathematicalNonUnitalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Prod.instNonUnitalNonAssocRing
prod
β€”Set.prod_mono
prod_mono_left πŸ“–mathematicalβ€”Monotone
NonUnitalSubring
Prod.instNonUnitalNonAssocRing
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_mono_right πŸ“–mathematicalβ€”Monotone
NonUnitalSubring
Prod.instNonUnitalNonAssocRing
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_top πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubring
instTop
comap
NonUnitalRingHom
Prod.instNonUnitalNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Prod.instNonUnitalNonAssocRing
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.fst
β€”ext
NonUnitalRingHom.instNonUnitalRingHomClass
range_fst πŸ“–mathematicalβ€”NonUnitalRingHom.srange
Prod.instNonUnitalNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.fst
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
β€”NonUnitalSubsemiring.range_fst
range_snd πŸ“–mathematicalβ€”NonUnitalRingHom.srange
Prod.instNonUnitalNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.snd
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
β€”NonUnitalSubsemiring.range_snd
range_subtype πŸ“–mathematicalβ€”NonUnitalRingHom.range
NonUnitalSubring
SetLike.instMembership
instSetLike
NonUnitalSubringClass.toNonUnitalNonAssocRing
instNonUnitalSubringClass
NonUnitalSubringClass.subtype
β€”SetLike.coe_injective
instNonUnitalSubringClass
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.coe_srange
Subtype.range_coe
sInf_toAddSubgroup πŸ“–mathematicalβ€”toAddSubgroup
InfSet.sInf
NonUnitalSubring
instInfSet
iInf
AddSubgroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
AddSubgroup.instInfSet
Set
Set.instMembership
β€”mk'_toAddSubgroup
sInf_toSubsemigroup πŸ“–mathematicalβ€”toSubsemigroup
InfSet.sInf
NonUnitalSubring
instInfSet
iInf
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Subsemigroup.instInfSet
Set
Set.instMembership
β€”mk'_toSubsemigroup
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
NonUnitalSubring
instSetLike
closure
β€”mem_closure
sum_mem πŸ“–mathematicalNonUnitalSubring
SetLike.instMembership
instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”sum_mem
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubringClass.toNonUnitalSubsemiringClass
instNonUnitalSubringClass
toAddSubgroup_eq_top πŸ“–mathematicalβ€”toAddSubgroup
Top.top
AddSubgroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
AddSubgroup.instTop
NonUnitalSubring
instTop
β€”β€”
toAddSubgroup_top πŸ“–mathematicalβ€”toAddSubgroup
Top.top
NonUnitalSubring
instTop
AddSubgroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
AddSubgroup.instTop
β€”β€”
toNonUnitalSubsemiring_eq_top πŸ“–mathematicalβ€”toNonUnitalSubsemiring
Top.top
NonUnitalSubsemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instTop
NonUnitalSubring
instTop
β€”β€”
toNonUnitalSubsemiring_top πŸ“–mathematicalβ€”toNonUnitalSubsemiring
Top.top
NonUnitalSubring
instTop
NonUnitalSubsemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instTop
β€”β€”
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
NonUnitalSubring
SetLike.instMembership
instSetLike
Top.top
instTop
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubringClass.toNonUnitalNonAssocRing
instNonUnitalSubringClass
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
topEquiv
Subsemigroup
Subsemigroup.instSetLike
Subsemigroup.instTop
β€”instNonUnitalSubringClass
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Top.top
Subsemigroup.instTop
DFunLike.coe
RingEquiv
NonUnitalSubring
instSetLike
instTop
NonUnitalSubringClass.toNonUnitalNonAssocRing
instNonUnitalSubringClass
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
topEquiv
β€”instNonUnitalSubringClass
top_prod πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubring
instTop
comap
NonUnitalRingHom
Prod.instNonUnitalNonAssocSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Prod.instNonUnitalNonAssocRing
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.snd
β€”ext
NonUnitalRingHom.instNonUnitalRingHomClass
top_prod_top πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubring
instTop
Prod.instNonUnitalNonAssocRing
β€”NonUnitalRingHom.instNonUnitalRingHomClass
top_prod
comap_top

NonUnitalSubring.center

Definitions

NameCategoryTheorems
instNonUnitalCommRing πŸ“–CompOp
4 mathmath: NonUnitalSubring.centerCongr_apply_coe, NonUnitalSubring.centerCongr_symm_apply_coe, NonUnitalSubring.centerToMulOpposite_symm_apply_coe, NonUnitalSubring.centerToMulOpposite_apply_coe

RingEquiv

Definitions

NameCategoryTheorems
nonUnitalSubringCongr πŸ“–CompOpβ€”
ofLeftInverse' πŸ“–CompOp
2 mathmath: ofLeftInverse'_symm_apply, ofLeftInverse'_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ofLeftInverse'_apply πŸ“–mathematicalDFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalRingHom.instFunLike
NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
NonUnitalRingHom.range
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubring.toNonUnitalRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofLeftInverse'
β€”β€”
ofLeftInverse'_symm_apply πŸ“–mathematicalDFunLike.coe
NonUnitalRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalRingHom.instFunLike
RingEquiv
NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
NonUnitalRingHom.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubring.toNonUnitalRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofLeftInverse'
β€”β€”

---

← Back to Index