| Name | Category | Theorems |
center π | CompOp | 9 mathmath: centerCongr_apply_coe, mem_center_iff, center_eq_top, centerCongr_symm_apply_coe, center_toNonUnitalSubsemiring, coe_center, centerToMulOpposite_symm_apply_coe, NonUnitalSubalgebra.center_toNonUnitalSubring, centerToMulOpposite_apply_coe
|
centerCongr π | CompOp | 2 mathmath: centerCongr_apply_coe, centerCongr_symm_apply_coe
|
centerToMulOpposite π | CompOp | 2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
|
closure π | CompOp | 16 mathmath: mem_closure_of_mem, NonUnitalRingHom.map_closure, closure_preimage_le, closure_empty, NonUnitalRingHom.eqOn_set_closure, closure_univ, closure_eq, closure_sUnion, closure_mono, closure_union, closure_iUnion, mem_closure_iff, subset_closure, mem_closure, NonUnitalRingHom.closure_preimage_le, closure_le
|
closureNonUnitalCommRingOfComm π | CompOp | β |
comap π | CompOp | 14 mathmath: prod_top, map_equiv_eq_comap_symm, closure_preimage_le, comap_top, comap_comap, map_le_iff_le_comap, top_prod, comap_equiv_eq_map_symm, mem_comap, comap_iInf, comap_inf, coe_comap, gc_map_comap, NonUnitalRingHom.closure_preimage_le
|
decidableMemCenter π | CompOp | β |
equivMapOfInjective π | CompOp | 1 mathmath: coe_equivMapOfInjective_apply
|
gi π | CompOp | β |
instBot π | CompOp | 4 mathmath: closure_empty, mem_bot, coe_bot, map_bot
|
instCompleteLattice π | CompOp | 9 mathmath: map_iSup, mem_sSup_of_directedOn, mem_iSup_of_directed, map_sup, closure_sUnion, closure_union, coe_sSup_of_directedOn, closure_iUnion, coe_iSup_of_directed
|
instInfSet π | CompOp | 8 mathmath: coe_sInf, coe_iInf, sInf_toSubsemigroup, mem_iInf, comap_iInf, sInf_toAddSubgroup, mem_sInf, map_iInf
|
instInhabited π | CompOp | β |
instMin π | CompOp | 4 mathmath: map_inf, mem_inf, comap_inf, coe_inf
|
instTop π | CompOp | 23 mathmath: coe_top, toNonUnitalSubsemiring_eq_top, prod_top, eq_top_iff', comap_top, mem_top, topEquiv_symm_apply_coe, NonUnitalRingHom.eqLocus_same, closure_univ, center_eq_top, topEquiv_apply, toAddSubgroup_eq_top, NonUnitalRingHom.range_eq_top, top_prod, top_prod_top, toNonUnitalSubsemiring_top, NonUnitalRingHom.range_eq_top_of_surjective, NonUnitalAlgebra.to_subring_eq_top, NonUnitalAlgebra.toNonUnitalSubring_eq_top, NonUnitalAlgebra.top_toSubring, NonUnitalRingHom.range_eq_map, NonUnitalAlgebra.toNonUnitalSubring_top, toAddSubgroup_top
|
map π | CompOp | 18 mathmath: map_inf, NonUnitalRingHom.map_closure, map_equiv_eq_comap_symm, map_iSup, map_map, map_sup, map_le_iff_le_comap, mem_map, map_bot, comap_equiv_eq_map_symm, coe_equivMapOfInjective_apply, mem_map_equiv, map_id, coe_map, gc_map_comap, NonUnitalRingHom.range_eq_map, NonUnitalRingHom.map_range, map_iInf
|
prod π | CompOp | 8 mathmath: prod_top, top_prod, prod_mono_left, top_prod_top, prod_mono, mem_prod, prod_mono_right, coe_prod
|
prodEquiv π | CompOp | β |
topEquiv π | CompOp | 2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply
|