Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Norm/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsnorm_gen_eq_coeff_zero_minpoly, norm_gen_eq_prod_roots, norm_eq_of_algEquiv, norm_eq_of_equiv_equiv, norm_eq_of_ringEquiv, norm_eq_prod_embeddings_gen, norm_eq_zero_iff, norm_eq_zero_iff', norm_eq_zero_iff_of_basis, norm_inv, norm_ne_zero_iff, norm_ne_zero_iff_of_basis, norm_zero, prod_embeddings_eq_finrank_pow, norm_gen_eq_one, norm_gen_eq_prod_roots
16
Total16

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
norm_eq_of_algEquiv πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
norm
AlgEquiv
AlgEquiv.instFunLike
β€”smulCommClass_self
IsScalarTower.left
RingHomCompTriple.ids
RingHomInvPair.ids
LinearMap.det_conj
LinearMap.ext
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.apply_symm_apply
norm_eq_of_equiv_equiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
norm
RingEquiv.symm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
RingEquiv.symm_apply_apply
commutes
RingEquiv.map_mul'
RingEquiv.map_add'
norm_eq_of_ringEquiv
norm_eq_of_algEquiv
norm_eq_of_ringEquiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MonoidHom.instFunLike
norm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
norm_eq_matrix_det
smul_def
RingEquiv.apply_symm_apply
RingEquiv.map_det
Matrix.ext
RingHomInvPair.ids
smulCommClass_self
Finite.of_fintype
to_smulCommClass
IsScalarTower.right
LinearEquiv.map_zero
LinearMap.toMatrix_apply
Module.Basis.coe_mapCoeffs
norm_eq_one_of_not_exists_basis
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
norm_eq_prod_embeddings_gen πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
minpoly
PowerBasis.gen
IsSeparable
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
MonoidHom.instFunLike
norm
Finset.prod
AlgHom
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toCommMonoid
Finset.univ
PowerBasis.AlgHom.fintype
instIsDomain
AlgHom.funLike
β€”instIsDomain
PowerBasis.norm_gen_eq_prod_roots
Fintype.prod_equiv
Finset.prod_mem_multiset
Finset.prod_eq_multiset_prod
Multiset.toFinset_val
Multiset.dedup_eq_self
Polynomial.nodup_roots
Polynomial.Separable.map
Multiset.map_id
norm_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
norm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”norm_eq_matrix_det
Matrix.exists_mulVec_eq_zero_iff
mul_eq_zero
IsDomain.to_noZeroDivisors
Module.Basis.ext_elem
RingHomInvPair.ids
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
leftMulMatrix_mulVec_repr
Finite.of_fintype
Module.Basis.equivFun_apply
Module.Basis.equivFun_symm_apply
LinearEquiv.apply_symm_apply
Mathlib.Tactic.Contrapose.contraposeβ‚„
LinearEquiv.injective
norm_zero
IsDomain.toNontrivial
norm_eq_zero_iff' πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
toModule
Ring.toSemiring
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
LinearMap.det
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
LinearMap.mul
to_smulCommClass
IsScalarTower.right
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”norm_eq_zero_iff
norm_eq_zero_iff_of_basis πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
norm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”norm_eq_zero_iff
Module.Free.of_basis
Module.Finite.of_basis
norm_inv πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
norm
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”inv_zero
norm_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
mul_left_injectiveβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
norm_ne_zero_iff
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
inv_mul_cancelβ‚€
map_one
MonoidHomClass.toOneHomClass
norm_ne_zero_iff πŸ“–β€”β€”β€”β€”not_iff_not
norm_eq_zero_iff
norm_ne_zero_iff_of_basis πŸ“–β€”β€”β€”β€”not_iff_not
norm_eq_zero_iff_of_basis
norm_zero πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
norm
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
smulCommClass_self
IsScalarTower.left
norm_apply
to_smulCommClass
IsScalarTower.right
coe_lmul_eq_mul
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
LinearMap.det_zero'
Finite.of_fintype
Module.Free.instNonemptyChooseBasisIndexOfNontrivial
prod_embeddings_eq_finrank_pow πŸ“–mathematicalβ€”Finset.prod
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.univ
minpoly.AlgHom.fintype
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
DFunLike.coe
AlgHom.funLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
PowerBasis.gen
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommRing.toCommSemiring
Ring.toSemiring
PowerBasis.AlgHom.fintype
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toModule
β€”instIsDomain
FiniteDimensional.right
Fintype.prod_equiv
Finset.univ_sigma_univ
Finset.prod_sigma
Finset.prod_pow
Finset.prod_congr
Finset.prod_const
AlgHom.card
isSeparable_tower_top_of_isSeparable

Algebra.PowerBasis

Theorems

NameKindAssumesProvesValidatesDepends On
norm_gen_eq_coeff_zero_minpoly πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
PowerBasis.gen
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
PowerBasis.dim
Polynomial.coeff
minpoly
β€”Algebra.norm_eq_matrix_det
Matrix.det_eq_sign_charpoly_coeff
charpoly_leftMulMatrix
Fintype.card_fin
norm_gen_eq_prod_roots πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
minpoly
PowerBasis.gen
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
MonoidHom.instFunLike
Algebra.norm
Multiset.prod
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.aroots
instIsDomain
β€”minpoly.monic
PowerBasis.isIntegral_gen
instIsDomain
norm_gen_eq_coeff_zero_minpoly
PowerBasis.natDegree_minpoly
Module.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Polynomial.coeff_map
Polynomial.Splits.coeff_zero_eq_prod_roots_of_monic
Polynomial.Monic.map
Polynomial.Monic.natDegree_map
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
mul_assoc
mul_pow
map_neg
RingHomClass.toAddMonoidHomClass
map_one
MonoidHomClass.toOneHomClass
neg_mul
one_mul
neg_neg
one_pow

IntermediateField.AdjoinSimple

Theorems

NameKindAssumesProvesValidatesDepends On
norm_gen_eq_one πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
MonoidHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
IntermediateField.toField
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
IntermediateField.algebra'
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
gen
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”IsScalarTower.left
Algebra.norm_eq_one_of_not_exists_basis
Mathlib.Tactic.Contrapose.contraposeβ‚„
IsIntegral.of_mem_of_fg
Submodule.fg_iff_finiteDimensional
Module.Basis.finiteDimensional_of_finite
Finite.of_fintype
IntermediateField.subset_adjoin
Set.mem_singleton
norm_gen_eq_prod_roots πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MonoidHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
IntermediateField.toField
CommRing.toCommSemiring
MonoidHom.instFunLike
Algebra.norm
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
gen
Multiset.prod
CommRing.toCommMonoid
Polynomial.aroots
instIsDomain
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.left
instIsDomain
IntermediateField.adjoin.powerBasis_gen
Algebra.PowerBasis.norm_gen_eq_prod_roots
minpoly.algebraMap_eq
IntermediateField.isScalarTower_mid'
algebraMap_gen
Polynomial.aroots.congr_simp
norm_gen_eq_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
minpoly.eq_zero
Polynomial.roots.congr_simp
Polynomial.map_zero
Polynomial.roots_zero

---

← Back to Index