Documentation Verification Report

Nullstellensatz

πŸ“ Source: Mathlib/RingTheory/Nullstellensatz.lean

Statistics

MetricCount
DefinitionspointToPoint, vanishingIdeal, zeroLocus
3
TheoremsvanishingIdeal_zeroLocus, eq_vanishingIdeal_singleton_of_isMaximal, instIsMaximalVanishingIdealSingletonForallSet, instIsPrimeVanishingIdealSingletonForallSet, isMaximal_iff_eq_vanishingIdeal_singleton, le_vanishingIdeal_zeroLocus, le_zeroLocus_iff_le_vanishingIdeal, mem_vanishingIdeal_iff, mem_vanishingIdeal_singleton_iff, mem_zeroLocus_iff, pointToPoint_zeroLocus_le, radical_le_vanishingIdeal_zeroLocus, vanishingIdeal_anti_mono, vanishingIdeal_empty, vanishingIdeal_pointToPoint, vanishingIdeal_zeroLocus_eq_radical, zeroLocus_anti_mono, zeroLocus_bot, zeroLocus_span, zeroLocus_top, zeroLocus_vanishingIdeal_galoisConnection, zeroLocus_vanishingIdeal_le
22
Total25

MvPolynomial

Definitions

NameCategoryTheorems
pointToPoint πŸ“–CompOp
2 mathmath: vanishingIdeal_pointToPoint, pointToPoint_zeroLocus_le
vanishingIdeal πŸ“–CompOp
16 mathmath: vanishingIdeal_anti_mono, radical_le_vanishingIdeal_zeroLocus, le_vanishingIdeal_zeroLocus, zeroLocus_vanishingIdeal_le, IsPrime.vanishingIdeal_zeroLocus, vanishingIdeal_pointToPoint, instIsPrimeVanishingIdealSingletonForallSet, le_zeroLocus_iff_le_vanishingIdeal, eq_vanishingIdeal_singleton_of_isMaximal, vanishingIdeal_empty, zeroLocus_vanishingIdeal_galoisConnection, mem_vanishingIdeal_iff, mem_vanishingIdeal_singleton_iff, instIsMaximalVanishingIdealSingletonForallSet, vanishingIdeal_zeroLocus_eq_radical, isMaximal_iff_eq_vanishingIdeal_singleton
zeroLocus πŸ“–CompOp
15 mathmath: radical_le_vanishingIdeal_zeroLocus, le_vanishingIdeal_zeroLocus, zeroLocus_vanishingIdeal_le, IsPrime.vanishingIdeal_zeroLocus, pointToPoint_zeroLocus_le, zeroLocus_bot, le_zeroLocus_iff_le_vanishingIdeal, mem_zeroLocus_iff, zeroLocus_anti_mono, zeroLocus_vanishingIdeal_galoisConnection, zeroLocus_span, zeroLocus_top, FirstOrder.Ring.mvPolynomial_zeroLocus_definable, ax_grothendieck_zeroLocus, vanishingIdeal_zeroLocus_eq_radical

Theorems

NameKindAssumesProvesValidatesDepends On
eq_vanishingIdeal_singleton_of_isMaximal πŸ“–mathematicalβ€”vanishingIdeal
Set
Set.instSingletonSet
β€”Algebra.isAlgebraic_iff_isIntegral
algebraMap_isIntegral_iff
comp_C_integral_of_surjective_of_isJacobsonRing
instIsJacobsonRingOfIsArtinianRing
isArtinian_of_fg_of_artinian'
DivisionRing.instIsArtinianRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
instIsDomain
Ideal.Quotient.isDomain
Ideal.IsMaximal.isPrime'
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
algHom_ext
aeval_X
EuclideanDomain.toNontrivial
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
instIsMaximalVanishingIdealSingletonForallSet πŸ“–mathematicalβ€”Ideal.IsMaximal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
vanishingIdeal
Algebra.id
Set
Set.instSingletonSet
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.ext
RingHom.ker_isMaximal_of_surjective
algHom_C
instIsPrimeVanishingIdealSingletonForallSet πŸ“–mathematicalβ€”Ideal.IsPrime
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
vanishingIdeal
Set
Set.instSingletonSet
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ideal.ext
RingHom.ker_isPrime
instIsDomain
isMaximal_iff_eq_vanishingIdeal_singleton πŸ“–mathematicalβ€”Ideal.IsMaximal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
vanishingIdeal
Algebra.id
Set
Set.instSingletonSet
β€”eq_vanishingIdeal_singleton_of_isMaximal
instIsMaximalVanishingIdealSingletonForallSet
le_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
zeroLocus
β€”β€”
le_zeroLocus_iff_le_vanishingIdeal πŸ“–mathematicalβ€”Set
Set.instLE
zeroLocus
Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
β€”GaloisConnection.le_iff_le
zeroLocus_vanishingIdeal_galoisConnection
mem_vanishingIdeal_iff πŸ“–mathematicalβ€”MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
Ideal
CommSemiring.toSemiring
commSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
DFunLike.coe
AlgHom
algebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”
mem_vanishingIdeal_singleton_iff πŸ“–mathematicalβ€”MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
Ideal
CommSemiring.toSemiring
commSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
algebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”
mem_zeroLocus_iff πŸ“–mathematicalβ€”Set
Set.instMembership
zeroLocus
DFunLike.coe
AlgHom
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
algebra
Algebra.id
AlgHom.funLike
aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”
pointToPoint_zeroLocus_le πŸ“–mathematicalβ€”Set
PrimeSpectrum
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
commSemiring
Set.instLE
Set.image
pointToPoint
Algebra.id
zeroLocus
PrimeSpectrum.zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”le_trans
le_vanishingIdeal_zeroLocus
vanishingIdeal_anti_mono
Set.singleton_subset_iff
radical_le_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.radical
vanishingIdeal
zeroLocus
β€”mem_vanishingIdeal_singleton_iff
Ideal.mem_sInf
Ideal.radical_eq_sInf
le_trans
le_vanishingIdeal_zeroLocus
vanishingIdeal_anti_mono
instIsPrimeVanishingIdealSingletonForallSet
vanishingIdeal_anti_mono πŸ“–mathematicalSet
Set.instLE
Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
vanishingIdeal
β€”β€”
vanishingIdeal_empty πŸ“–mathematicalβ€”vanishingIdeal
Set
Set.instEmptyCollection
Top.top
Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”le_antisymm
le_top
Set.notMem_empty
vanishingIdeal_pointToPoint πŸ“–mathematicalβ€”PrimeSpectrum.vanishingIdeal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
commSemiring
Set.image
PrimeSpectrum
pointToPoint
vanishingIdeal
β€”le_antisymm
PrimeSpectrum.mem_vanishingIdeal
instIsPrimeVanishingIdealSingletonForallSet
Set.mem_singleton_iff
vanishingIdeal_zeroLocus_eq_radical πŸ“–mathematicalβ€”vanishingIdeal
zeroLocus
Ideal.radical
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
commSemiring
β€”le_antisymm
Ideal.radical_eq_jacobson
isJacobsonRing
instIsJacobsonRingOfIsArtinianRing
isArtinian_of_fg_of_artinian'
DivisionRing.instIsArtinianRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
le_sInf
eq_vanishingIdeal_singleton_of_isMaximal
vanishingIdeal_anti_mono
mem_vanishingIdeal_singleton_iff
Set.mem_singleton_iff
radical_le_vanishingIdeal_zeroLocus
zeroLocus_anti_mono πŸ“–mathematicalIdeal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
Set.instLE
zeroLocus
β€”β€”
zeroLocus_bot πŸ“–mathematicalβ€”zeroLocus
Bot.bot
Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Top.top
Set
BooleanAlgebra.toTop
Set.instBooleanAlgebra
β€”eq_top_iff
Ideal.mem_bot
RingHom.map_zero
zeroLocus_span πŸ“–mathematicalβ€”zeroLocus
Ideal.span
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
setOf
β€”eq_of_forall_le_iff
le_zeroLocus_iff_le_vanishingIdeal
Ideal.span_le
forallβ‚‚_swap
zeroLocus_top πŸ“–mathematicalβ€”zeroLocus
Top.top
Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Set
BooleanAlgebra.toBot
Set.instBooleanAlgebra
β€”eq_bot_iff
one_ne_zero
NeZero.one
EuclideanDomain.toNontrivial
Submodule.mem_top
RingHom.map_one
zeroLocus_vanishingIdeal_galoisConnection πŸ“–mathematicalβ€”GaloisConnection
Ideal
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
commSemiring
OrderDual
Set
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
OrderDual.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
zeroLocus
vanishingIdeal
β€”GaloisConnection.monotone_intro
vanishingIdeal_anti_mono
zeroLocus_anti_mono
le_vanishingIdeal_zeroLocus
zeroLocus_vanishingIdeal_le
zeroLocus_vanishingIdeal_le πŸ“–mathematicalβ€”Set
Set.instLE
zeroLocus
vanishingIdeal
β€”β€”

MvPolynomial.IsPrime

Theorems

NameKindAssumesProvesValidatesDepends On
vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”MvPolynomial.vanishingIdeal
MvPolynomial.zeroLocus
β€”MvPolynomial.vanishingIdeal_zeroLocus_eq_radical
Ideal.IsPrime.radical

---

← Back to Index