PicardGroup
π Source: Mathlib/RingTheory/PicardGroup.lean
Statistics
ClassGroup
Definitions
| Name | Category | Theorems |
|---|---|---|
equivPic π | CompOp |
Theorems
CommRing
Definitions
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
relPic_eq_top π | mathematical | β | relPicTop.topSubgroupPicCommGroup.toGroupinstCommGroupPicSubgroup.instTop | β | top_unique |
CommRing.Pic
Definitions
| Name | Category | Theorems |
|---|---|---|
AsModule π | CompOp | 7 mathmath:mul_eq_tensor, inv_eq_dual, mk_eq_iff, mk_eq_self, mapAlgebra_apply, ext_iff, instFreeAsModuleOfNat |
functor π | CompOp | β |
instAddCommGroupAsModule π | CompOp | β |
instCoeSortType π | CompOp | β |
mapAlgebra π | CompOp | |
mapRingHom π | CompOp | |
mk π | CompOp | β |
Theorems
CommRing.Pic.mk
Definitions
| Name | Category | Theorems |
|---|---|---|
linearEquiv π | CompOp | β |
Ideal
Theorems
Module.Flat
Definitions
| Name | Category | Theorems |
|---|---|---|
submoduleAlgebra π | CompOp | |
submoduleAlgebraEquiv π | CompOp | β |
tensorSubmoduleAlgebraEquiv π | CompOp | β |
tensorSubmoduleAlgebraEquivMul π | CompOp | β |
toAlgebra π | CompOp |
Theorems
Module.Invertible
Definitions
| Name | Category | Theorems |
|---|---|---|
algEquivOfRing π | CompOp | |
embAlgebra π | CompOp | β |
leftCancelEquiv π | CompOp | |
linearEquiv π | CompOp | β |
linearEquivDual π | CompOp | β |
linearEquivOfLeftInverse π | CompOp | |
linearEquivOfRightInverse π | CompOp | |
rTensorEquiv π | CompOp | |
rTensorInv π | CompOp | |
rightCancelEquiv π | CompOp | |
toSubmodule π | CompOp | β |
Theorems
Submodule
Definitions
| Name | Category | Theorems |
|---|---|---|
tensorEquivMul π | CompOp | β |
tensorInvEquiv π | CompOp | β |
unitsQuotEquivRelPic π | CompOp | |
unitsToPic π | CompOp | |
unitsToPicEquiv π | CompOp | β |
Theorems
(root)
Definitions
Theorems
---