Documentation Verification Report

PicardGroup

πŸ“ Source: Mathlib/RingTheory/PicardGroup.lean

Statistics

MetricCount
DefinitionsequivPic, Pic, AsModule, functor, instAddCommGroupAsModule, instCoeSortType, mapAlgebra, mapRingHom, mk, linearEquiv, relPic, submoduleAlgebra, submoduleAlgebraEquiv, tensorSubmoduleAlgebraEquiv, tensorSubmoduleAlgebraEquivMul, toAlgebra, algEquivOfRing, embAlgebra, leftCancelEquiv, linearEquiv, linearEquivDual, linearEquivOfLeftInverse, linearEquivOfRightInverse, rTensorEquiv, rTensorInv, rightCancelEquiv, toSubmodule, tensorEquivMul, tensorInvEquiv, unitsQuotEquivRelPic, unitsToPic, unitsToPicEquiv, instCommGroupPic
33
TheoremsequivPic_apply, equivPic_symm_apply, ext_iff, instFreeAsModuleOfNat, instFreeOfSubsingleton, instSubsingletonOfFiniteMaximalSpectrum, instSubsingletonOfIsLocalRing, inv_eq_dual, mapAlgebra_apply, mapAlgebra_comp_mapAlgebra, mapAlgebra_mapAlgebra, mapAlgebra_self, mapAlgebra_self_apply, mapRingHom_algebraMap, mapRingHom_comp_mapRingHom, mapRingHom_id, mapRingHom_id_apply, mapRingHom_mapRingHom, mk_dual, mk_eq_iff, mk_eq_mk_iff, mk_eq_one, mk_eq_one_iff, mk_eq_one_iff_free, mk_eq_self, mk_self, mk_tensor, mul_eq_tensor, subsingleton_iff, subsingleton_iffβ‚›, relPic_eq_top, eq_top_of_mk_tensor_eq_one, instInvertibleSubtypeMemSubmoduleSubmoduleAlgebra, instSubtypeMemSubmoduleSubmoduleAlgebra, toAlgebra_injective, top_mul_submoduleAlgebra, algEquivOfRing_apply, bijective, bijective_curry, bijective_of_surjective, embAlgebra_injective, exists_linearEquiv_ideal, finrank_eq_one, free_iff_linearEquiv, inst, instDual, instFaithfulSMul, instFinite, instLocalizationLocalizedModule, instProjective, instTensorProduct, instTensorProduct_1, instTensorProduct_2, lTensor_bijective_iff, lTensor_injective_iff, lTensor_surjective_iff, left, leftCancelEquiv_comp_lTensor_comp_symm, leftInverse_iff_rightInverse, leftInverse_of_rightInverse, linearEquivOfLeftInverse_apply, linearEquivOfLeftInverse_symm_apply, linearEquivOfRightInverse_apply, linearEquivOfRightInverse_symm_apply, of_isLocalization, rTensorEquiv_apply_apply, rTensorEquiv_symm_apply_apply, rTensorInv_injective, rTensorInv_leftInverse, rTensor_bijective_iff, rTensor_injective_iff, rTensor_surjective_iff, rank_eq_one, right, rightCancelEquiv_comp_rTensor_comp_symm, rightInverse_of_leftInverse, tensorProductComm_eq_refl, tmul_comm, toModuleEnd_bijective, instInvertibleSubtypeMemVal, ker_unitsToPic, mulExact_unitsMap_spanSingleton_unitsToPic, mulExact_unitsToPic_mapAlgebra, projective_of_isUnit, projective_units, range_unitsToPic, unitsQuotEquivRelPic_apply_coe, unitsQuotEquivRelPic_symm_apply, unitsToPic_apply, instInvertibleCarrierOutModuleCatValSkeleton, instInvertibleCarrierOutSemimoduleCatValSkeleton, instInvertibleReprβ‚›, instSmallUnitsSkeletonModuleCat, instSmallUnitsSkeletonSemimoduleCat, instSubsingletonPicOfIsDomainOfNonemptyNormalizedGCDMonoid
95
Total128

ClassGroup

Definitions

NameCategoryTheorems
equivPic πŸ“–CompOp
2 mathmath: equivPic_symm_apply, equivPic_apply

Theorems

NameKindAssumesProvesValidatesDepends On
equivPic_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
ClassGroup
CommRing.Pic
CommRing.toCommSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupClassGroup
instCommGroupPic
EquivLike.toFunLike
MulEquiv.instEquivLike
equivPic
Set
Set.instMembership
Set.range
Units
Submodule
FractionRing
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
OreLocalization.instCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
Algebra.toModule
OreLocalization.instAlgebra
Algebra.id
MonoidWithZero.toMonoid
IdemSemiring.toSemiring
Submodule.idemSemiring
MonoidHom
Units.instGroup
MonoidHom.instFunLike
Submodule.unitsToPic
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
MonoidHom.ker
SetLike.instMembership
Subgroup.instSetLike
MonoidHom.range
QuotientGroup.Quotient.group
Subgroup.mul
QuotientGroup.quotientKerEquivRange
Units.map
MonoidWithZeroHom.toMonoidHom
NonAssocSemiring.toMulZeroOneClass
Submodule.spanSingleton
QuotientGroup.congr
MulEquiv.refl
OreLocalization.instAddCommMonoidOreLocalization
CommMonoid.toMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
OreLocalization.instModuleOfIsScalarTower
OreLocalization.instSemiring
OreLocalization.instMonoid
mulEquivUnitsSubmoduleQuotRange
β€”instSmallUnitsSkeletonSemimoduleCat
equivPic_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
CommRing.Pic
CommRing.toCommSemiring
ClassGroup
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
instCommGroupClassGroup
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
equivPic
HasQuotient.Quotient
Units
Submodule
FractionRing
CommSemiring.toSemiring
OreLocalization.instAddCommMonoidOreLocalization
CommMonoid.toMonoid
CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
OreLocalization.instModuleOfIsScalarTower
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MonoidWithZero.toMonoid
IdemSemiring.toSemiring
Submodule.idemSemiring
OreLocalization.instSemiring
OreLocalization.instAlgebra
Algebra.id
Subgroup
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
MonoidHom.range
OreLocalization.instMonoid
Units.map
MonoidWithZeroHom.toMonoidHom
Algebra.toModule
NonAssocSemiring.toMulZeroOneClass
Submodule.spanSingleton
IsScalarTower.right
QuotientGroup.Quotient.group
Subgroup.normal_of_comm
Units.instCommGroupUnits
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
Submodule.instIdemCommSemiring
OreLocalization.instCommSemiring
mulEquivUnitsSubmoduleQuotRange
MonoidHom.ker
Submodule.unitsToPic
QuotientGroup.congr
MulEquiv.refl
Subgroup.map
MonoidHomClass.toMonoidHom
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Subgroup.map_symm_eq_iff_map_eq
SetLike.instMembership
Subgroup.instSetLike
Subgroup.mul
QuotientGroup.quotientKerEquivRange
CommRing.relPic
MulEquiv.subgroupCongr
Submodule.range_unitsToPic
Top.top
Subgroup.instTop
Subgroup.topEquiv
β€”β€”

CommRing

Definitions

NameCategoryTheorems
Pic πŸ“–CompOp
33 mathmath: Pic.mk_dual, Pic.instSubsingletonOfFiniteMaximalSpectrum, Pic.mapAlgebra_self, Pic.mul_eq_tensor, Pic.instSubsingletonOfIsLocalRing, Submodule.ker_unitsToPic, Pic.mk_tensor, Pic.mapRingHom_id_apply, relPic_eq_top, Pic.mk_eq_one, Pic.inv_eq_dual, Pic.subsingleton_iff, Pic.mapAlgebra_apply, Pic.mk_eq_one_iff, Pic.instFreeAsModuleOfNat, Pic.mapAlgebra_comp_mapAlgebra, Pic.mapRingHom_id, Pic.mapAlgebra_self_apply, Submodule.unitsToPic_apply, Submodule.range_unitsToPic, Submodule.unitsQuotEquivRelPic_symm_apply, Pic.mapRingHom_mapRingHom, ClassGroup.equivPic_symm_apply, Pic.mk_eq_one_iff_free, Pic.mapRingHom_comp_mapRingHom, Submodule.mulExact_unitsMap_spanSingleton_unitsToPic, Pic.mk_self, ClassGroup.equivPic_apply, Submodule.mulExact_unitsToPic_mapAlgebra, Pic.mapAlgebra_mapAlgebra, instSubsingletonPicOfIsDomainOfNonemptyNormalizedGCDMonoid, Pic.subsingleton_iffβ‚›, Submodule.unitsQuotEquivRelPic_apply_coe
relPic πŸ“–CompOp
5 mathmath: relPic_eq_top, Submodule.range_unitsToPic, Submodule.unitsQuotEquivRelPic_symm_apply, ClassGroup.equivPic_symm_apply, Submodule.unitsQuotEquivRelPic_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
relPic_eq_top πŸ“–mathematicalβ€”relPic
Top.top
Subgroup
Pic
CommGroup.toGroup
instCommGroupPic
Subgroup.instTop
β€”top_unique

CommRing.Pic

Definitions

NameCategoryTheorems
AsModule πŸ“–CompOp
7 mathmath: mul_eq_tensor, inv_eq_dual, mk_eq_iff, mk_eq_self, mapAlgebra_apply, ext_iff, instFreeAsModuleOfNat
functor πŸ“–CompOpβ€”
instAddCommGroupAsModule πŸ“–CompOpβ€”
instCoeSortType πŸ“–CompOpβ€”
mapAlgebra πŸ“–CompOp
7 mathmath: mapAlgebra_self, mapRingHom_algebraMap, mapAlgebra_apply, mapAlgebra_comp_mapAlgebra, mapAlgebra_self_apply, Submodule.mulExact_unitsToPic_mapAlgebra, mapAlgebra_mapAlgebra
mapRingHom πŸ“–CompOp
5 mathmath: mapRingHom_id_apply, mapRingHom_algebraMap, mapRingHom_id, mapRingHom_mapRingHom, mapRingHom_comp_mapRingHom
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext_iff πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AsModule
SemimoduleCat.isAddCommMonoid
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
DFunLike.coe
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
SemimoduleCat.isModule
β€”RingHomInvPair.ids
instSmallUnitsSkeletonSemimoduleCat
instInvertibleCarrierOutSemimoduleCatValSkeleton
mk_eq_iff
mk_eq_self
instFreeAsModuleOfNat πŸ“–mathematicalβ€”Module.Free
AsModule
CommRing.Pic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
CommSemiring.toSemiring
SemimoduleCat.isAddCommMonoid
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
DFunLike.coe
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
SemimoduleCat.isModule
β€”instSmallUnitsSkeletonSemimoduleCat
instInvertibleCarrierOutSemimoduleCatValSkeleton
mk_eq_one_iff_free
mk_eq_self
instFreeOfSubsingleton πŸ“–mathematicalβ€”Module.Free
CommSemiring.toSemiring
β€”Module.Invertible.instFinite
Module.Finite.exists_fin'
subsingleton_iffβ‚›
instInvertibleReprβ‚›
Module.Free.of_equiv
instSubsingletonOfFiniteMaximalSpectrum πŸ“–mathematicalβ€”CommRing.Pic
CommRing.toCommSemiring
β€”subsingleton_iff
Module.free_of_flat_of_finrank_eq
Module.Invertible.instFinite
Module.Flat.of_projective
Module.Invertible.instProjective
Module.Invertible.finrank_eq_one
Algebra.to_smulCommClass
Module.Invertible.instTensorProduct_2
IsScalarTower.right
Module.Invertible.inst
commRing_strongRankCondition
IsLocalRing.toNontrivial
MaximalSpectrum.isMaximal
Field.instIsLocalRing
instFreeOfSubsingleton
instSubsingletonOfIsLocalRing
instSubsingletonOfIsLocalRing πŸ“–mathematicalβ€”CommRing.Pic
CommRing.toCommSemiring
β€”subsingleton_iff
Module.free_of_flat_of_isLocalRing
Module.Invertible.instFinite
Module.Flat.of_projective
Module.Invertible.instProjective
inv_eq_dual πŸ“–mathematicalβ€”CommRing.Pic
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
Module.Dual
AsModule
CommSemiring.toSemiring
SemimoduleCat.isAddCommMonoid
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
DFunLike.coe
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
SemimoduleCat.isModule
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
Module.Invertible.instDual
instInvertibleCarrierOutSemimoduleCatValSkeleton
β€”instSmallUnitsSkeletonSemimoduleCat
Algebra.to_smulCommClass
Module.Invertible.instDual
instInvertibleCarrierOutSemimoduleCatValSkeleton
mk_dual
mk_eq_self
mapAlgebra_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
mapAlgebra
TensorProduct
AsModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SemimoduleCat.isAddCommMonoid
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
Algebra.toModule
SemimoduleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
β€”instSmallUnitsSkeletonSemimoduleCat
mapAlgebra_comp_mapAlgebra πŸ“–mathematicalβ€”MonoidHom.comp
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
mapAlgebra
β€”MonoidHom.ext
MonoidHom.comp_apply
mapAlgebra_mapAlgebra
mapAlgebra_mapAlgebra πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
mapAlgebra
β€”instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instTensorProduct_2
instInvertibleCarrierOutSemimoduleCatValSkeleton
IsScalarTower.right
Module.Invertible.inst
RingHomInvPair.ids
mk_eq_mk_iff
IsScalarTower.to_smulCommClass
RingHomCompTriple.ids
mapAlgebra_self πŸ“–mathematicalβ€”mapAlgebra
Algebra.id
MonoidHom.id
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
β€”MonoidHom.ext
mapAlgebra_self_apply
mapAlgebra_self_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
mapAlgebra
Algebra.id
β€”instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instTensorProduct_2
instInvertibleCarrierOutSemimoduleCatValSkeleton
IsScalarTower.right
Module.Invertible.inst
RingHomInvPair.ids
mk_eq_iff
mapRingHom_algebraMap πŸ“–mathematicalβ€”mapRingHom
algebraMap
CommSemiring.toSemiring
mapAlgebra
β€”mapRingHom.eq_1
toAlgebra_algebraMap
mapRingHom_comp_mapRingHom πŸ“–mathematicalβ€”MonoidHom.comp
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
mapRingHom
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”IsScalarTower.of_algebraMap_eq'
mapAlgebra_comp_mapAlgebra
mapRingHom_id πŸ“–mathematicalβ€”mapRingHom
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MonoidHom.id
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
β€”mapRingHom.eq_1
mapAlgebra_self
mapRingHom_id_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
mapRingHom
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”mapRingHom_id
mapRingHom_mapRingHom πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
CommRing.Pic
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
mapRingHom
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”mapRingHom_comp_mapRingHom
mk_dual πŸ“–mathematicalβ€”Module.Dual
CommSemiring.toSemiring
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
Module.Invertible.instDual
CommRing.Pic
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
β€”instSmallUnitsSkeletonSemimoduleCat
Algebra.to_smulCommClass
Module.Invertible.instFinite
Module.Invertible.instDual
Units.ext
Equiv.symm_apply_apply
smulCommClass_self
Module.Finite.exists_fin'
RingHomCompTriple.ids
RingHomInvPair.ids
mk_eq_iff πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AsModule
SemimoduleCat.isAddCommMonoid
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
DFunLike.coe
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
SemimoduleCat.isModule
β€”RingHomInvPair.ids
instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instFinite
Equiv.apply_eq_iff_eq_symm_apply
Units.ext
Quotient.mk_eq_iff_out
Module.Finite.exists_fin'
RingHomCompTriple.ids
mk_eq_mk_iff πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
instSmallUnitsSkeletonSemimoduleCat
mk_eq_iff
RingHomCompTriple.ids
mk_eq_one πŸ“–mathematicalβ€”CommRing.Pic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
β€”mk_eq_one_iff_free
mk_eq_one_iff πŸ“–mathematicalβ€”CommRing.Pic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHomInvPair.ids
Module.Invertible.inst
mk_self
mk_eq_mk_iff
mk_eq_one_iff_free πŸ“–mathematicalβ€”CommRing.Pic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
Module.Free
CommSemiring.toSemiring
β€”RingHomInvPair.ids
mk_eq_one_iff
Module.Invertible.free_iff_linearEquiv
mk_eq_self πŸ“–mathematicalβ€”AsModule
SemimoduleCat.isAddCommMonoid
CommSemiring.toSemiring
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
DFunLike.coe
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
SemimoduleCat.isModule
instInvertibleCarrierOutSemimoduleCatValSkeleton
β€”instSmallUnitsSkeletonSemimoduleCat
instInvertibleCarrierOutSemimoduleCatValSkeleton
RingHomInvPair.ids
mk_eq_iff
mk_self πŸ“–mathematicalβ€”NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Module.Invertible.inst
CommRing.Pic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
β€”instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instFinite
Module.Invertible.inst
Units.ext
Module.Finite.exists_fin'
mk_tensor πŸ“–mathematicalβ€”TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
Module.Invertible.instTensorProduct_2
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
CommRing.Pic
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
β€”instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instFinite
Module.Invertible.instTensorProduct_2
IsScalarTower.left
Units.ext
Equiv.symm_apply_apply
Module.Finite.exists_fin'
RingHomCompTriple.ids
RingHomInvPair.ids
CategoryTheory.Skeleton.toSkeleton_tensorObj
mul_eq_tensor πŸ“–mathematicalβ€”CommRing.Pic
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
TensorProduct
AsModule
SemimoduleCat.isAddCommMonoid
CommSemiring.toSemiring
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
DFunLike.coe
Equiv
Shrink
Units
instSmallUnitsSkeletonSemimoduleCat
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivShrink
SemimoduleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
Module.Invertible.instTensorProduct_2
instInvertibleCarrierOutSemimoduleCatValSkeleton
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instTensorProduct_2
instInvertibleCarrierOutSemimoduleCatValSkeleton
IsScalarTower.left
mk_tensor
mk_eq_self
subsingleton_iff πŸ“–mathematicalβ€”CommRing.Pic
CommRing.toCommSemiring
Module.Free
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
β€”subsingleton_iffβ‚›
subsingleton_iffβ‚› πŸ“–mathematicalβ€”CommRing.Pic
Module.Free
CommSemiring.toSemiring
β€”instSmallUnitsSkeletonSemimoduleCat
instInvertibleCarrierOutSemimoduleCatValSkeleton
mk_eq_self
mk_eq_one_iff_free

CommRing.Pic.mk

Definitions

NameCategoryTheorems
linearEquiv πŸ“–CompOpβ€”

Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_of_mk_tensor_eq_one πŸ“–mathematicalCommRing.toCommSemiring
TensorProduct
Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.addCommMonoid
Submodule.module
TensorProduct.addCommMonoid
TensorProduct.instModule
Module.Invertible.instTensorProduct_2
Algebra.id
Submodule.isScalarTower'
Algebra.toSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.right
CommRing.Pic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
instCommGroupPic
Top.top
Submodule.instTop
β€”Module.Invertible.instTensorProduct_2
Submodule.isScalarTower'
IsScalarTower.right
RingHomInvPair.ids
CommRing.Pic.mk_eq_one_iff
RingHomCompTriple.ids
Submodule.LinearDisjoint.of_left_le_one_of_flat
LE.le.trans
le_top
Eq.ge
one_eq_top
Module.Flat.of_projective
Module.Invertible.instProjective
IsFractionRing.self_iff_nonZeroDivisors_le_isUnit
IsRegular.mem_nonZeroDivisors
isRightRegular_iff_isRegular
IsRightRegular.eq_1
smul_eq_mul
IsScalarTower.left
Submodule.coe_smul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
mul_one
Subtype.val_injective
LinearEquiv.injective
eq_top_of_isUnit_mem
mul_le_right
instIsTwoSided_1
mul_le_left

Module.Flat

Definitions

NameCategoryTheorems
submoduleAlgebra πŸ“–CompOp
3 mathmath: instSubtypeMemSubmoduleSubmoduleAlgebra, top_mul_submoduleAlgebra, instInvertibleSubtypeMemSubmoduleSubmoduleAlgebra
submoduleAlgebraEquiv πŸ“–CompOpβ€”
tensorSubmoduleAlgebraEquiv πŸ“–CompOpβ€”
tensorSubmoduleAlgebraEquivMul πŸ“–CompOpβ€”
toAlgebra πŸ“–CompOp
2 mathmath: toAlgebra_injective, Module.Invertible.embAlgebra_injective

Theorems

NameKindAssumesProvesValidatesDepends On
instInvertibleSubtypeMemSubmoduleSubmoduleAlgebra πŸ“–mathematicalβ€”Module.Invertible
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
Submodule.setLike
submoduleAlgebra
Submodule.addCommMonoid
Submodule.module
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
Module.Invertible.congr
instSubtypeMemSubmoduleSubmoduleAlgebra πŸ“–mathematicalβ€”Module.Flat
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
Submodule.setLike
submoduleAlgebra
Submodule.addCommMonoid
Submodule.module
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
of_linearEquiv
toAlgebra_injective πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap.instFunLike
toAlgebra
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
EquivLike.toEmbeddingLike
rTensor_preserves_injective_linearMap
FaithfulSMul.algebraMap_injective
top_mul_submoduleAlgebra πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule.mul
IsScalarTower.right
Top.top
Submodule.instTop
submoduleAlgebra
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
IsScalarTower.right
RingHomSurjective.ids
Submodule.mulMap_range
RingHomSurjective.invPair
RingHomCompTriple.ids
LinearMap.IsScalarTower.compatibleSMul
TensorProduct.isScalarTower_left
TensorProduct.AlgebraTensorModule.curry_injective
Submodule.isScalarTower'
IsScalarTower.left
LinearMap.ext
IsScalarTower.to_smulCommClass
LinearEquiv.range

Module.Invertible

Definitions

NameCategoryTheorems
algEquivOfRing πŸ“–CompOp
1 mathmath: algEquivOfRing_apply
embAlgebra πŸ“–CompOpβ€”
leftCancelEquiv πŸ“–CompOp
1 mathmath: leftCancelEquiv_comp_lTensor_comp_symm
linearEquiv πŸ“–CompOpβ€”
linearEquivDual πŸ“–CompOpβ€”
linearEquivOfLeftInverse πŸ“–CompOp
2 mathmath: linearEquivOfLeftInverse_symm_apply, linearEquivOfLeftInverse_apply
linearEquivOfRightInverse πŸ“–CompOp
2 mathmath: linearEquivOfRightInverse_symm_apply, linearEquivOfRightInverse_apply
rTensorEquiv πŸ“–CompOp
2 mathmath: rTensorEquiv_apply_apply, rTensorEquiv_symm_apply_apply
rTensorInv πŸ“–CompOp
2 mathmath: rTensorInv_leftInverse, rTensorInv_injective
rightCancelEquiv πŸ“–CompOp
2 mathmath: rTensorEquiv_symm_apply_apply, rightCancelEquiv_comp_rTensor_comp_symm
toSubmodule πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivOfRing_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
CommSemiring.toSemiring
Algebra.id
AlgEquiv.instFunLike
algEquivOfRing
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”β€”
bijective πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
Module.Dual
CommSemiring.toSemiring
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
DFunLike.coe
LinearMap
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
contractLeft
β€”β€”
bijective_curry πŸ“–mathematicalβ€”Function.Bijective
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
DFunLike.coe
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
TensorProduct.curry
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”RingHomInvPair.ids
smulCommClass_self
TensorProduct.smulCommClass_left
RingHomCompTriple.ids
LinearEquiv.toLinearMap_symm_comp_eq
LinearMap.ext
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.right
TensorProduct.isScalarTower
IsScalarTower.left
LinearMap.ext_ring
IsScalarTower.to_smulCommClass
one_smul
LinearEquiv.symm_apply_apply
LinearEquiv.bijective
bijective_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Function.Bijectiveβ€”Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
instDual
instTensorProduct
embAlgebra_injective πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap.instFunLike
Module.Flat.toAlgebra
β€”Module.Flat.toAlgebra_injective
exists_linearEquiv_ideal πŸ“–mathematicalβ€”LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Ideal
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddCommGroup.toAddCommMonoid
Submodule.addCommMonoid
Submodule.module
β€”FractionRing.instFaithfulSMul
instFaithfulSMul
inst
RingHomInvPair.ids
Submodule.range_unitsToPic
Submodule.instInvertibleSubtypeMemVal
CommRing.Pic.mk_eq_mk_iff
Units.submodule_isFractional
Localization.isLocalization
RingHomCompTriple.ids
finrank_eq_one πŸ“–mathematicalβ€”Module.finrank
CommSemiring.toSemiring
β€”subsingleton_or_nontrivial
Module.rank_eq_one_iff_finrank_eq_one
rank_subsingleton
LinearEquiv.finrank_eq
RingHomInvPair.ids
free_iff_linearEquiv
Module.finrank_self
free_iff_linearEquiv πŸ“–mathematicalβ€”Module.Free
CommSemiring.toSemiring
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHomInvPair.ids
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
instFinite
card_eq_of_linearEquiv
invariantBasisNumber_of_rankCondition
rankCondition_of_nontrivial_of_commSemiring
RingHomCompTriple.ids
smulCommClass_self
Finite.instProd
Finite.of_fintype
Algebra.to_smulCommClass
Fintype.card_eq_one_iff_nonempty_unique
Fintype.card_prod
Fintype.card_unique
Unique.instSubsingleton
Module.Free.of_equiv
Module.Free.self
inst πŸ“–mathematicalβ€”Module.Invertible
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
β€”left
instDual πŸ“–mathematicalβ€”Module.Invertible
Module.Dual
CommSemiring.toSemiring
LinearMap.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
β€”left
Algebra.to_smulCommClass
instFaithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”Function.Bijective.injective
smulCommClass_self
toModuleEnd_bijective
LinearMap.ext
instFinite πŸ“–mathematicalβ€”Module.Finite
CommSemiring.toSemiring
β€”β€”
instLocalizationLocalizedModule πŸ“–mathematicalβ€”Module.Invertible
Localization
CommSemiring.toCommMonoid
LocalizedModule
OreLocalization.instCommSemiring
OreLocalization.oreSetComm
OreLocalization.instAddCommMonoidOreLocalization
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
OreLocalization.instModule
β€”of_isLocalization
IsScalarTower.left
IsScalarTower.right
Localization.isLocalization
localizedModuleIsLocalizedModule
OreLocalization.instIsScalarTower_1
instProjective πŸ“–mathematicalβ€”Module.Projective
CommSemiring.toSemiring
β€”β€”
instTensorProduct πŸ“–mathematicalβ€”Module.Invertible
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”right
Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
instTensorProduct_1 πŸ“–mathematicalβ€”Module.Invertible
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
β€”right
Algebra.to_smulCommClass
IsScalarTower.to_smulCommClass
IsScalarTower.right
RingHomCompTriple.ids
RingHomInvPair.ids
instTensorProduct_2 πŸ“–mathematicalβ€”Module.Invertible
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.leftModule
CommSemiring.toSemiring
IsScalarTower.to_smulCommClass
β€”congr
Algebra.to_smulCommClass
smulCommClass_self
IsScalarTower.to_smulCommClass
instTensorProduct
instTensorProduct_1
IsScalarTower.left
lTensor_bijective_iff πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”β€”
lTensor_injective_iff πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
leftCancelEquiv_comp_lTensor_comp_symm
EquivLike.toEmbeddingLike
Module.Flat.lTensor_preserves_injective_linearMap
Module.Flat.of_projective
Module.dual_projective
instFinite
instProjective
lTensor_surjective_iff πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.lTensor
β€”Algebra.to_smulCommClass
RingHomCompTriple.ids
RingHomInvPair.ids
leftCancelEquiv_comp_lTensor_comp_symm
LinearMap.lTensor_surjective
left πŸ“–mathematicalβ€”Module.Invertibleβ€”RingHomInvPair.ids
right
RingHomCompTriple.ids
leftCancelEquiv_comp_lTensor_comp_symm πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
leftCancelEquiv
LinearMap.lTensor
LinearEquiv.symm
β€”RingHomInvPair.ids
RingHomCompTriple.ids
LinearMap.comp_assoc
LinearEquiv.comp_toLinearMap_symm_eq
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
LinearMap.ext
IsScalarTower.to_smulCommClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
leftInverse_iff_rightInverse πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”rightInverse_of_leftInverse
leftInverse_of_rightInverse
leftInverse_of_rightInverse πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”rightInverse_of_leftInverse
linearEquivOfLeftInverse_apply πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
linearEquivOfLeftInverse
β€”RingHomInvPair.ids
linearEquivOfLeftInverse_symm_apply πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
linearEquivOfLeftInverse
β€”RingHomInvPair.ids
linearEquivOfRightInverse_apply πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
linearEquivOfRightInverse
β€”RingHomInvPair.ids
linearEquivOfRightInverse_symm_apply πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
linearEquivOfRightInverse
β€”RingHomInvPair.ids
of_isLocalization πŸ“–mathematicalβ€”Module.Invertibleβ€”congr
Algebra.to_smulCommClass
instTensorProduct_1
IsLocalizedModule.isBaseChange
rTensorEquiv_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
EquivLike.toFunLike
LinearEquiv.instEquivLike
rTensorEquiv
AddMonoidHom
AddZeroClass.toAddZero
TensorProduct.addZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
TensorProduct.liftAux
LinearMap.comp
β€”RingHomInvPair.ids
LinearMap.comp.congr_simp
LinearMap.complβ‚‚_id
rTensorEquiv_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
LinearEquiv
RingHomInvPair.ids
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
rTensorEquiv
LinearEquiv.congrRight
rightCancelEquiv
LinearMap.rTensor
TensorProduct.assoc
TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHomInvPair.ids
TensorProduct.smulCommClass_left
smulCommClass_self
rTensorInv_injective πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
DFunLike.coe
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
LinearMap.instFunLike
rTensorInv
β€”RingHomInvPair.ids
TensorProduct.smulCommClass_left
smulCommClass_self
EquivLike.toEmbeddingLike
RingHomCompTriple.ids
rTensorInv_leftInverse
rTensorInv_leftInverse πŸ“–mathematicalβ€”LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
DFunLike.coe
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
LinearMap.instFunLike
rTensorInv
LinearMap.rTensorHom
β€”RingHomInvPair.ids
TensorProduct.smulCommClass_left
smulCommClass_self
LinearEquiv.eq_symm_apply
TensorProduct.AlgebraTensorModule.curry_injective
TensorProduct.isScalarTower
IsScalarTower.left
IsScalarTower.to_smulCommClass
LinearMap.instIsScalarTower
LinearMap.ext
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
rTensor_bijective_iff πŸ“–mathematicalβ€”Function.Bijective
TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
β€”β€”
rTensor_injective_iff πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
β€”lTensor_injective_iff
rTensor_surjective_iff πŸ“–mathematicalβ€”TensorProduct
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
β€”LinearMap.lTensor_surj_iff_rTensor_surj
lTensor_surjective_iff
rank_eq_one πŸ“–mathematicalβ€”Module.rank
CommSemiring.toSemiring
Cardinal
Cardinal.instOne
β€”Module.rank_eq_one_iff_finrank_eq_one
finrank_eq_one
right πŸ“–mathematicalβ€”Module.Invertibleβ€”RingHomInvPair.ids
Algebra.to_smulCommClass
RingHomCompTriple.ids
LinearEquiv.coe_trans
LinearEquiv.eq_comp_toLinearMap_symm
TensorProduct.AlgebraTensorModule.curry_injective
IsScalarTower.left
IsScalarTower.right
LinearMap.ext
IsScalarTower.to_smulCommClass
LinearEquiv.bijective
rightCancelEquiv_comp_rTensor_comp_symm πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
rightCancelEquiv
LinearMap.rTensor
LinearEquiv.symm
β€”RingHomInvPair.ids
RingHomCompTriple.ids
LinearMap.comp_assoc
LinearEquiv.comp_toLinearMap_symm_eq
TensorProduct.AlgebraTensorModule.curry_injective
TensorProduct.isScalarTower
IsScalarTower.left
smulCommClass_self
IsScalarTower.to_smulCommClass
LinearMap.instIsScalarTower
LinearMap.ext
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
rightInverse_of_leftInverse πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”Function.Bijective.injective
bijective_of_surjective
Function.LeftInverse.surjective
tensorProductComm_eq_refl πŸ“–mathematicalβ€”TensorProduct.comm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
LinearEquiv.refl
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”Ideal.IsMaximal.isPrime'
IsScalarTower.left
IsScalarTower.right
LinearEquiv.toLinearMap_injective
RingHomInvPair.ids
LinearMap.eq_of_localization_maximal
IsLocalization.instIsLocalizedModuleTensorProductMap
localizedModuleIsLocalizedModule
smulCommClass_self
IsLocalizedModule.linearMap_ext
TensorProduct.AlgebraTensorModule.curry_injective
TensorProduct.isScalarTower
OreLocalization.instIsScalarTower
RingHomCompTriple.ids
LinearMap.ext
IsScalarTower.to_smulCommClass
IsLocalizedModule.map_apply
free_iff_linearEquiv
instLocalizationLocalizedModule
CommRing.Pic.instFreeOfSubsingleton
CommRing.Pic.instSubsingletonOfFiniteMaximalSpectrum
Finite.of_fintype
Localization.AtPrime.isLocalRing
LinearMap.IsScalarTower.compatibleSMul
OreLocalization.instIsScalarTower_1
LinearEquiv.injective
IsScalarTower.to_smulCommClass'
TensorProduct.CompatibleSMul.isScalarTower
IsLocalization.instCompatibleSMulLocalizationOfIsScalarTower_1
mul_one
smul_eq_mul
TensorProduct.smul_tmul
mul_comm
IsLocalizedModule.map_id
tmul_comm πŸ“–mathematicalβ€”TensorProduct.tmul
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
β€”DFunLike.congr_fun
RingHomInvPair.ids
tensorProductComm_eq_refl
toModuleEnd_bijective πŸ“–mathematicalβ€”Function.Bijective
Module.End
CommSemiring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Module.End.instSemiring
RingHom.instFunLike
Module.toModuleEnd
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”smulCommClass_self
RingHomInvPair.ids
TensorProduct.smulCommClass_left
Algebra.to_smulCommClass
RingHomCompTriple.ids
LinearMap.ext
rTensorEquiv_apply_apply
one_mul
Equiv.bijective

Submodule

Definitions

NameCategoryTheorems
tensorEquivMul πŸ“–CompOpβ€”
tensorInvEquiv πŸ“–CompOpβ€”
unitsQuotEquivRelPic πŸ“–CompOp
2 mathmath: unitsQuotEquivRelPic_symm_apply, unitsQuotEquivRelPic_apply_coe
unitsToPic πŸ“–CompOp
9 mathmath: ker_unitsToPic, unitsToPic_apply, range_unitsToPic, unitsQuotEquivRelPic_symm_apply, ClassGroup.equivPic_symm_apply, mulExact_unitsMap_spanSingleton_unitsToPic, ClassGroup.equivPic_apply, mulExact_unitsToPic_mapAlgebra, unitsQuotEquivRelPic_apply_coe
unitsToPicEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instInvertibleSubtypeMemVal πŸ“–mathematicalβ€”Module.Invertible
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
addCommMonoid
module
β€”Module.Invertible.left
ker_unitsToPic πŸ“–mathematicalβ€”MonoidHom.ker
Units
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
Units.instGroup
CommRing.Pic
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
unitsToPic
MonoidHom.range
Units.map
MonoidWithZeroHom.toMonoidHom
NonAssocSemiring.toMulZeroOneClass
spanSingleton
β€”Subgroup.ext
RingHomInvPair.ids
instInvertibleSubtypeMemVal
CommRing.Pic.mk_eq_one_iff
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
eq_span_singleton_of_surjective
LinearEquiv.surjective
isUnit_iff_exists_and_exists
IsScalarTower.right
span_mul_span
Set.mul_singleton
Set.image_singleton
Units.mul_inv
span_singleton_eq_one_iff
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Units.inv_mul
mul_assoc
Units.ext
RingHomSurjective.invPair
RingHomCompTriple.ids
faithfulSMul_iff_injective_smul_one
Algebra.smul_mul_assoc
ext
mulExact_unitsMap_spanSingleton_unitsToPic πŸ“–mathematicalβ€”Function.MulExact
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
IdemSemiring.toSemiring
idemSemiring
CommRing.Pic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
Units.map
MonoidWithZeroHom.toMonoidHom
NonAssocSemiring.toMulZeroOneClass
spanSingleton
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
unitsToPic
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”MonoidHom.mulExact_iff
ker_unitsToPic
mulExact_unitsToPic_mapAlgebra πŸ“–mathematicalβ€”Function.MulExact
Units
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
CommRing.Pic
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
unitsToPic
CommRing.Pic.mapAlgebra
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”MonoidHom.mulExact_iff
range_unitsToPic
projective_of_isUnit πŸ“–mathematicalIsUnit
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
Module.Projective
SetLike.instMembership
setLike
addCommMonoid
module
β€”projective_units
projective_units πŸ“–mathematicalβ€”Module.Projective
CommSemiring.toSemiring
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
addCommMonoid
module
β€”RingHomCompTriple.ids
Algebra.to_smulCommClass
IsScalarTower.right
range_unitsToPic πŸ“–mathematicalβ€”MonoidHom.range
Units
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
Units.instGroup
CommRing.Pic
CommGroup.toGroup
instCommGroupPic
unitsToPic
CommRing.relPic
β€”Subgroup.ext
instSmallUnitsSkeletonSemimoduleCat
Module.Invertible.instTensorProduct_2
instInvertibleCarrierOutSemimoduleCatValSkeleton
IsScalarTower.right
Module.Invertible.inst
RingHomInvPair.ids
CommRing.Pic.mk_eq_one_iff
IsScalarTower.to_smulCommClass
RingHomCompTriple.ids
Algebra.to_smulCommClass
smulCommClass_self
TensorProduct.smulCommClass_left
IsScalarTower.to_smulCommClass'
InvMemClass.inv_mem
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid
Module.Flat.of_projective
Module.Invertible.instProjective
IsScalarTower.left
CommRing.Pic.mk_tensor
CommRing.Pic.mk_eq_self
mul_inv_cancel
eq_span_singleton_of_surjective
LinearEquiv.surjective
mem_mul_span_singleton
mem_top
Module.Flat.top_mul_submoduleAlgebra
IsUnit.map
MonoidHom.instMonoidHomClass
IsUnit.of_mul_eq_one_right
instInvertibleSubtypeMemVal
CommRing.Pic.mk_eq_iff
unitsQuotEquivRelPic_apply_coe πŸ“–mathematicalβ€”CommRing.Pic
Subgroup
CommGroup.toGroup
instCommGroupPic
SetLike.instMembership
Subgroup.instSetLike
CommRing.relPic
DFunLike.coe
MulEquiv
HasQuotient.Quotient
Units
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
MonoidHom.range
Units.map
MonoidWithZeroHom.toMonoidHom
NonAssocSemiring.toMulZeroOneClass
spanSingleton
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Subgroup.normal_of_comm
Units.instCommGroupUnits
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
unitsQuotEquivRelPic
Set
Set.instMembership
Set.range
MonoidHom
MonoidHom.instFunLike
unitsToPic
MonoidHom.ker
QuotientGroup.quotientKerEquivRange
QuotientGroup.congr
MulEquiv.refl
β€”instSmallUnitsSkeletonSemimoduleCat
Subgroup.normal_of_comm
unitsQuotEquivRelPic_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
CommRing.Pic
Subgroup
CommGroup.toGroup
instCommGroupPic
SetLike.instMembership
Subgroup.instSetLike
CommRing.relPic
HasQuotient.Quotient
Units
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
Units.instGroup
QuotientGroup.instHasQuotientSubgroup
MonoidHom.range
Units.map
MonoidWithZeroHom.toMonoidHom
NonAssocSemiring.toMulZeroOneClass
spanSingleton
Subgroup.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Subgroup.normal_of_comm
Units.instCommGroupUnits
CommSemiring.toCommMonoid
IdemCommSemiring.toCommSemiring
instIdemCommSemiring
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
unitsQuotEquivRelPic
MonoidHom.ker
unitsToPic
QuotientGroup.congr
MulEquiv.refl
Subgroup.map
MonoidHomClass.toMonoidHom
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
Subgroup.map_symm_eq_iff_map_eq
QuotientGroup.quotientKerEquivRange
MulEquiv.subgroupCongr
range_unitsToPic
β€”Subgroup.normal_of_comm
unitsToPic_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Units
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
idemSemiring
CommRing.Pic
MulOneClass.toMulOne
Units.instMulOneClass
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
instCommGroupPic
MonoidHom.instFunLike
unitsToPic
SetLike.instMembership
setLike
Units.val
addCommMonoid
module
instInvertibleSubtypeMemVal
β€”instSmallUnitsSkeletonSemimoduleCat

(root)

Definitions

NameCategoryTheorems
instCommGroupPic πŸ“–CompOp
28 mathmath: CommRing.Pic.mk_dual, CommRing.Pic.mapAlgebra_self, CommRing.Pic.mul_eq_tensor, Submodule.ker_unitsToPic, CommRing.Pic.mk_tensor, CommRing.Pic.mapRingHom_id_apply, CommRing.relPic_eq_top, CommRing.Pic.mk_eq_one, CommRing.Pic.inv_eq_dual, CommRing.Pic.mapAlgebra_apply, CommRing.Pic.mk_eq_one_iff, CommRing.Pic.instFreeAsModuleOfNat, CommRing.Pic.mapAlgebra_comp_mapAlgebra, CommRing.Pic.mapRingHom_id, CommRing.Pic.mapAlgebra_self_apply, Submodule.unitsToPic_apply, Submodule.range_unitsToPic, Submodule.unitsQuotEquivRelPic_symm_apply, CommRing.Pic.mapRingHom_mapRingHom, ClassGroup.equivPic_symm_apply, CommRing.Pic.mk_eq_one_iff_free, CommRing.Pic.mapRingHom_comp_mapRingHom, Submodule.mulExact_unitsMap_spanSingleton_unitsToPic, CommRing.Pic.mk_self, ClassGroup.equivPic_apply, Submodule.mulExact_unitsToPic_mapAlgebra, CommRing.Pic.mapAlgebra_mapAlgebra, Submodule.unitsQuotEquivRelPic_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
instInvertibleCarrierOutModuleCatValSkeleton πŸ“–mathematicalβ€”Module.Invertible
ModuleCat.carrier
CommRing.toRing
Quotient.out
ModuleCat
CategoryTheory.isIsomorphicSetoid
ModuleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
ModuleCat.monoidalCategory
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
β€”Module.Invertible.right
Quotient.eq
Units.inv_mul
instInvertibleCarrierOutSemimoduleCatValSkeleton πŸ“–mathematicalβ€”Module.Invertible
SemimoduleCat.carrier
CommSemiring.toSemiring
Quotient.out
SemimoduleCat
CategoryTheory.isIsomorphicSetoid
SemimoduleCat.moduleCategory
Units.val
CategoryTheory.Skeleton
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
β€”Module.Invertible.right
Quotient.eq
Units.inv_mul
instInvertibleReprβ‚› πŸ“–mathematicalβ€”Module.Invertible
Module.Finite.reprβ‚›
CommSemiring.toSemiring
Module.Invertible.instFinite
ModuleCon.instAddCommMonoidQuotient
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Pi.addCommMonoid
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
DFunLike.coe
LinearMap.instFunLike
Module.Finite.exists_fin'
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Module.Finite.kerReprβ‚›
ModuleCon.instModuleQuotient
β€”Module.Invertible.congr
Module.Invertible.instFinite
Module.Finite.exists_fin'
RingHomInvPair.ids
instSmallUnitsSkeletonModuleCat πŸ“–mathematicalβ€”Small
Units
CategoryTheory.Skeleton
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Skeleton.instMonoid
ModuleCat.monoidalCategory
β€”small_map
instSmallUnitsSkeletonSemimoduleCat
instSmallUnitsSkeletonSemimoduleCat πŸ“–mathematicalβ€”Small
Units
CategoryTheory.Skeleton
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
CategoryTheory.Skeleton.instMonoid
SemimoduleCat.monoidalCategory
β€”RingHomInvPair.ids
Module.Finite.exists_fin'
Module.Invertible.instFinite
instInvertibleCarrierOutSemimoduleCatValSkeleton
small_of_injective
small_sigma
UnivLE.small
univLE_of_max
UnivLE.self
Units.ext
Quotient.out_equiv_out
RingHomCompTriple.ids
instSubsingletonPicOfIsDomainOfNonemptyNormalizedGCDMonoid πŸ“–mathematicalβ€”CommRing.Pic
CommRing.toCommSemiring
β€”Equiv.subsingleton
NormalizedGCDMonoid.subsingleton_classGroup

---

← Back to Index