Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/PolynomialLaw/Basic.lean

Statistics

MetricCount
DefinitionsPolynomialLaw, add, comp, ground, id, instAdd, instAddCommGroup, instAddCommMonoid, instCoeFunForall, instInhabited, instModule, instMulAction, instNeg, instSMul, instZero, lground, lifts, neg, smul, toFun, toFun', toFunLifted, Ο€, Ο†, Β«term_β†’β‚šβ‚—[_]_Β»
25
Theoremsadd_def, add_def_apply, add_smul, comp_assoc, comp_id, comp_toFun', exists_lift, exists_lift', exists_lift_of_mem_range_rTensor, exists_range_Ο†_eq_of_fg, ext, ext_iff, factorsThrough_toFunLifted_Ο€, ground_apply, ground_id, ground_id_apply, id_apply', id_comp, isCompat, isCompat', isCompat_apply, isCompat_apply', neg_def, one_smul, one_tmul_ground, one_tmul_ground_apply', range_Ο†, smul_def, smul_def_apply, toFun'_eq_of_diagram, toFun'_eq_of_inclusion, toFun'_eq_toFun, toFun_add, toFun_add_apply, toFun_comp, toFun_comp_apply, toFun_eq_rTensor_Ο†_toFun', toFun_neg, toFun_smul, toFun_zero, zero_def, zero_smul, Ο€_surjective
43
Total68

PolynomialLaw

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
comp πŸ“–CompOp
6 mathmath: comp_assoc, comp_id, id_comp, toFun_comp_apply, comp_toFun', toFun_comp
ground πŸ“–CompOp
5 mathmath: ground_id_apply, ground_id, one_tmul_ground, ground_apply, one_tmul_ground_apply'
id πŸ“–CompOp
5 mathmath: ground_id_apply, comp_id, ground_id, id_comp, id_apply'
instAdd πŸ“–CompOp
5 mathmath: add_smul, toFun_add_apply, add_def_apply, add_def, toFun_add
instAddCommGroup πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOpβ€”
instCoeFunForall πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instModule πŸ“–CompOpβ€”
instMulAction πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
2 mathmath: neg_def, toFun_neg
instSMul πŸ“–CompOp
6 mathmath: add_smul, smul_def, one_smul, toFun_smul, zero_smul, smul_def_apply
instZero πŸ“–CompOp
3 mathmath: toFun_zero, zero_def, zero_smul
lground πŸ“–CompOpβ€”
lifts πŸ“–CompOp
2 mathmath: factorsThrough_toFunLifted_Ο€, Ο€_surjective
neg πŸ“–CompOpβ€”
smul πŸ“–CompOpβ€”
toFun πŸ“–CompOp
12 mathmath: toFun_eq_rTensor_Ο†_toFun', toFun_add_apply, toFun_zero, one_tmul_ground, toFun'_eq_toFun, isCompat, toFun_smul, toFun_add, toFun_comp_apply, toFun_neg, isCompat_apply, toFun_comp
toFun' πŸ“–CompOp
17 mathmath: toFun_eq_rTensor_Ο†_toFun', toFun'_eq_of_diagram, smul_def, zero_def, ext_iff, toFun'_eq_toFun, add_def_apply, add_def, neg_def, smul_def_apply, isCompat_apply', comp_toFun', toFun'_eq_of_inclusion, id_apply', ground_apply, one_tmul_ground_apply', isCompat'
toFunLifted πŸ“–CompOp
1 mathmath: factorsThrough_toFunLifted_Ο€
Ο€ πŸ“–CompOp
2 mathmath: factorsThrough_toFunLifted_Ο€, Ο€_surjective
Ο† πŸ“–CompOp
3 mathmath: toFun_eq_rTensor_Ο†_toFun', exists_range_Ο†_eq_of_fg, range_Ο†

Theorems

NameKindAssumesProvesValidatesDepends On
add_def πŸ“–mathematicalβ€”toFun'
PolynomialLaw
instAdd
Pi.instAdd
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.add
β€”β€”
add_def_apply πŸ“–mathematicalβ€”toFun'
PolynomialLaw
instAdd
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.add
β€”β€”
add_smul πŸ“–mathematicalβ€”PolynomialLaw
instSMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instAdd
β€”ext
add_smul
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
comp_toFun' πŸ“–mathematicalβ€”toFun'
comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
β€”β€”
exists_lift πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Algebra.toModule
MvPolynomial.algebra
Algebra.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
β€”Ο€_surjective
exists_lift' πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
MvPolynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MvPolynomial.commSemiring
Algebra.toModule
MvPolynomial.algebra
Algebra.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
AlgHom
AlgHom.funLike
β€”RingHomSurjective.ids
TensorProduct.Algebra.exists_of_fg
Subalgebra.FG.sup
Subalgebra.fg_adjoin_finset
exists_range_Ο†_eq_of_fg
le_sup_left
exists_lift_of_mem_range_rTensor
Algebra.subset_adjoin
Finset.coe_singleton
exists_lift_of_mem_range_rTensor πŸ“–mathematicalSubalgebra
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
AlgHom.range
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule
TensorProduct.addCommMonoid
TensorProduct.instModule
SetLike.instMembership
Submodule.setLike
LinearMap.range
Subalgebra.instSetLike
Subalgebra.toSemiring
Subalgebra.algebra
RingHom.id
RingHomSurjective.ids
LinearMap.rTensor
AlgHom.toLinearMap
Subalgebra.val
DFunLike.coe
LinearMap
LinearMap.instFunLike
β€”RingHomSurjective.ids
LinearMap.rTensor_surjective
AlgHom.rangeRestrict_surjective
Subalgebra.val_comp_inclusion
RingHomCompTriple.ids
AlgHom.comp_toLinearMap
LinearMap.rTensor_comp
LinearMap.comp_apply
AlgHom.val_comp_codRestrict
AlgHom.mem_range_self
exists_range_Ο†_eq_of_fg πŸ“–mathematicalSubalgebra.FG
CommSemiring.toSemiring
AlgHom.range
MvPolynomial
Finset.card
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
Ο†
β€”range_Ο†
ext πŸ“–β€”toFun'β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toFun'β€”ext
factorsThrough_toFunLifted_Ο€ πŸ“–mathematicalβ€”Function.FactorsThrough
lifts
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
toFunLifted
Ο€
β€”Algebra.map_top
Subalgebra.FG.map
Algebra.FiniteType.out
Algebra.FiniteType.instMvPolynomialOfFinite
Finite.of_fintype
Module.Finite.finiteType
Module.Finite.self
RingHomCompTriple.ids
AlgHom.val_comp_rangeRestrict
TensorProduct.Algebra.eq_of_fg_of_subtype_eq'
le_trans
le_of_eq
range_Ο†
LinearMap.rTensor_surjective
AlgHom.rangeRestrict_surjective
toFun'_eq_of_inclusion
LinearMap.rTensor_comp
TensorProduct.AlgebraTensorModule.curry_injective
Subalgebra.instIsScalarTowerSubtypeMem
TensorProduct.isScalarTower
LinearMap.ext
IsScalarTower.to_smulCommClass
ground_apply πŸ“–mathematicalβ€”ground
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
TensorProduct.lid
toFun'
Algebra.id
TensorProduct.tmul
Algebra.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
ground_id πŸ“–mathematicalβ€”ground
id
β€”one_smul
ground_id_apply πŸ“–mathematicalβ€”ground
id
β€”ground_id
id_apply' πŸ“–mathematicalβ€”toFun'
id
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
isCompat πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
toFun
β€”isCompat_apply
isCompat' πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
toFun'
β€”β€”
isCompat_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
toFun
β€”Ο€_surjective
range_Ο†
Finset.coe_image
Algebra.adjoin_image
Finset.mem_image_of_mem
MvPolynomial.algHom_ext
MvPolynomial.aeval_rename
MvPolynomial.comp_aeval
Equiv.symm_apply_apply
RingHomCompTriple.ids
toFun_eq_rTensor_Ο†_toFun'
LinearMap.comp_apply
LinearMap.rTensor_comp
AlgHom.comp_toLinearMap
toFun'_eq_of_diagram
AlgHom.val_comp_codRestrict
MvPolynomial.rename_X
MvPolynomial.aeval_X
isCompat_apply' πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
toFun'
β€”isCompat'
neg_def πŸ“–mathematicalβ€”toFun'
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PolynomialLaw
instNeg
Function.hasSMul
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.instSMul
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
one_smul πŸ“–mathematicalβ€”PolynomialLaw
instSMul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”ext
one_smul
one_tmul_ground πŸ“–mathematicalβ€”TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
ground
toFun
β€”toFun'_eq_toFun
IsScalarTower.left
TensorProduct.includeRight_lid
LinearMap.rTensor_tmul
AlgHom.toLinearMap_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
isCompat_apply
one_tmul_ground_apply' πŸ“–mathematicalβ€”TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
ground
toFun'
β€”RingHomInvPair.ids
ground_apply
IsScalarTower.left
TensorProduct.includeRight_lid
LinearMap.rTensor_tmul
AlgHom.toLinearMap_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
isCompat_apply'
range_Ο† πŸ“–mathematicalβ€”AlgHom.range
MvPolynomial
Finset.card
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
Ο†
Algebra.adjoin
SetLike.coe
Finset
Finset.instSetLike
β€”Algebra.adjoin_range_eq_range_aeval
Set.range_comp
Equiv.range_eq_univ
Set.image_univ
Subtype.range_coe_subtype
smul_def πŸ“–mathematicalβ€”toFun'
PolynomialLaw
instSMul
Function.hasSMul
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.instSMul
β€”β€”
smul_def_apply πŸ“–mathematicalβ€”toFun'
PolynomialLaw
instSMul
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.instSMul
β€”β€”
toFun'_eq_of_diagram πŸ“–mathematicalAlgHom.comp
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
Subalgebra.toSemiring
Subalgebra.algebra
Subalgebra.val
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
AlgHom.rangeRestrict
toFun'β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.comp_symm
AlgHom.val_comp_rangeRestrict
RingCon.quotientKerEquivRangeₐ_comp_mkₐ
AlgHom.comp_assoc
RingHomCompTriple.ids
LinearMap.rTensor_comp_apply
AlgHom.comp_toLinearMap
isCompat_apply'
AlgEquiv.symm_comp
toFun'_eq_of_inclusion πŸ“–mathematicalSubalgebra
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
AlgHom.range
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toSemiring
Subalgebra.algebra
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
AlgHom.comp
Subalgebra.inclusion
AlgHom.rangeRestrict
toFun'β€”toFun'_eq_of_diagram
AlgHom.ext
toFun'_eq_toFun πŸ“–mathematicalβ€”toFun'
toFun
β€”Ο€_surjective
toFun_eq_rTensor_Ο†_toFun'
isCompat_apply'
toFun_add πŸ“–mathematicalβ€”toFun
PolynomialLaw
instAdd
Pi.instAdd
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.add
β€”toFun_add_apply
toFun_add_apply πŸ“–mathematicalβ€”toFun
PolynomialLaw
instAdd
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.add
β€”Ο€_surjective
toFun_eq_rTensor_Ο†_toFun'
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
toFun_comp πŸ“–mathematicalβ€”toFun
comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
β€”Ο€_surjective
toFun_eq_rTensor_Ο†_toFun'
comp_toFun'
toFun_comp_apply πŸ“–mathematicalβ€”toFun
comp
β€”toFun_comp
toFun_eq_rTensor_Ο†_toFun' πŸ“–mathematicalΟ€
Finset
TensorProduct
MvPolynomial
Finset.card
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.module
Semiring.toModule
toFun
DFunLike.coe
LinearMap
RingHom.id
Algebra.toModule
MvPolynomial.algebra
Algebra.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
LinearMap.rTensor
AlgHom.toLinearMap
Ο†
toFun'
β€”toFun.eq_1
Function.FactorsThrough.extend_apply
factorsThrough_toFunLifted_Ο€
toFunLifted.eq_1
toFun_neg πŸ“–mathematicalβ€”toFun
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
PolynomialLaw
instNeg
Function.hasSMul
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.instSMul
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Ο€_surjective
toFun_eq_rTensor_Ο†_toFun'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
toFun_smul πŸ“–mathematicalβ€”toFun
PolynomialLaw
instSMul
Function.hasSMul
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.instSMul
β€”Ο€_surjective
toFun_eq_rTensor_Ο†_toFun'
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
toFun_zero πŸ“–mathematicalβ€”toFun
PolynomialLaw
instZero
Pi.instZero
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.zero
β€”Ο€_surjective
toFun_eq_rTensor_Ο†_toFun'
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
zero_def πŸ“–mathematicalβ€”toFun'
PolynomialLaw
instZero
Pi.instZero
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
TensorProduct.zero
β€”β€”
zero_smul πŸ“–mathematicalβ€”PolynomialLaw
instSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instZero
β€”ext
zero_smul
Ο€_surjective πŸ“–mathematicalβ€”lifts
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
Ο€
β€”RingHomSurjective.ids
TensorProduct.Algebra.exists_of_fg
exists_range_Ο†_eq_of_fg
exists_lift_of_mem_range_rTensor
le_of_eq

(root)

Definitions

NameCategoryTheorems
PolynomialLaw πŸ“–CompData
14 mathmath: PolynomialLaw.add_smul, PolynomialLaw.smul_def, PolynomialLaw.one_smul, PolynomialLaw.toFun_add_apply, PolynomialLaw.toFun_zero, PolynomialLaw.zero_def, PolynomialLaw.add_def_apply, PolynomialLaw.add_def, PolynomialLaw.toFun_smul, PolynomialLaw.toFun_add, PolynomialLaw.neg_def, PolynomialLaw.zero_smul, PolynomialLaw.smul_def_apply, PolynomialLaw.toFun_neg
Β«term_β†’β‚šβ‚—[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index