Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/Polynomial/Basic.lean

Statistics

MetricCount
DefinitionsdegreeLE, leadingCoeff, leadingCoeffNth, ofPolynomial, degreeLE, degreeLT, degreeLTEquiv, monicEquivDegreeLT, restriction
9
Theoremseq_zero_of_constant_mem_of_maximal, isPrime_map_C_iff_isPrime, isPrime_map_C_of_isPrime, is_fg_degreeLE, leadingCoeffNth_mono, mem_leadingCoeff, mem_leadingCoeffNth, mem_leadingCoeffNth_zero, mem_map_C_iff, mem_ofPolynomial, polynomial_mem_ideal_of_coeff_mem_ideal, polynomial_not_isField, aeval_natDegree_le, instFiniteOfIsEmpty, isNoetherianRing, isNoetherianRing_fin, isNoetherianRing_fin_0, ker_map, ker_mapAlgHom, map_mvPolynomial_eq_evalβ‚‚, mem_ideal_of_coeff_mem_ideal, mem_map_C_iff, prime_C_iff, prime_rename_iff, geom_sum, geom_sum', coeff_prod_mem_ideal_pow_tsub, coeff_restriction, coeff_restriction', degreeLE_eq_span_X_pow, degreeLE_mono, degreeLTEquiv_eq_zero_iff_eq_zero, degreeLT_eq_span_X_pow, degreeLT_mono, degreeLT_succ_eq_degreeLE, degree_restriction, disjoint_ker_aeval_of_isCoprime, eval_eq_sum_degreeLTEquiv, evalβ‚‚_restriction, exists_degree_le_of_mem_span, exists_degree_le_of_mem_span_of_finite, geom_sum_X_comp_X_add_one_eq_sum, instCharP, instExpChar, isNoetherianRing, ker_mapRingHom, linearIndependent_powers_iff_aeval, map_restriction, mem_degreeLE, mem_degreeLT, monic_geom_sum_X, monic_restriction, natDegree_restriction, not_finite, prime_C_iff, restriction_one, restriction_zero, span_le_degreeLE_of_finite, span_of_finite_le_degreeLT, sup_aeval_range_eq_top_of_isCoprime, sup_ker_aeval_eq_ker_aeval_mul_of_coprime, sup_ker_aeval_le_ker_aeval_mul, support_restriction, exists_C_coeff_notMem, mem_span_C_coeff, span_le_of_C_coeff_mem
66
Total75

Ideal

Definitions

NameCategoryTheorems
degreeLE πŸ“–CompOp
1 mathmath: is_fg_degreeLE
leadingCoeff πŸ“–CompOp
1 mathmath: mem_leadingCoeff
leadingCoeffNth πŸ“–CompOp
3 mathmath: mem_leadingCoeffNth_zero, mem_leadingCoeffNth, leadingCoeffNth_mono
ofPolynomial πŸ“–CompOp
1 mathmath: mem_ofPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
eq_zero_of_constant_mem_of_maximal πŸ“–mathematicalIsField
Ring.toSemiring
Polynomial
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Classical.by_contradiction
IsMaximal.ne_top
eq_top_iff_one
IsField.mul_inv_cancel
RingHom.map_mul
IsField.mul_comm
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_mem_left
isPrime_map_C_iff_isPrime πŸ“–mathematicalβ€”IsPrime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”RingHom.instRingHomClass
comap_isPrime
ext
Polynomial.coeff_C_zero
Polynomial.coeff_C_ne_zero
eq_top_iff_one
mem_map_C_iff
Polynomial.coeff_one_zero
IsPrime.ne_top'
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Polynomial.coeff_mul
Finset.insert_erase
Finset.HasAntidiagonal.mem_antidiagonal
Finset.sum_insert
Finset.notMem_erase
Iff.not
add_mem_iff_left
Submodule.sum_mem
Finset.mem_erase
mul_comm
mul_mem_left
Nat.find_min
IsPrime.mem_or_mem'
Nat.find_spec
isPrime_map_C_of_isPrime πŸ“–mathematicalβ€”IsPrime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”isPrime_map_C_iff_isPrime
is_fg_degreeLE πŸ“–mathematicalβ€”Submodule.FG
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
degreeLE
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
β€”isNoetherian_submodule_left
isNoetherian_of_fg_of_noetherian
Polynomial.degreeLE_eq_span_X_pow
leadingCoeffNth_mono πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
leadingCoeffNth
β€”mul_mem_right
instIsTwoSided
le_trans
Polynomial.degree_mul_le
le_imp_le_of_le_of_le
add_le_add_left
WithBot.addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_refl
add_le_add_right
WithBot.addLeftMono
Polynomial.degree_X_pow_le
Nat.cast_add
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Polynomial.leadingCoeff_mul_X_pow
mem_leadingCoeff πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
leadingCoeff
Polynomial
Polynomial.semiring
Polynomial.leadingCoeff
β€”leadingCoeff.eq_1
Submodule.mem_iSup_of_directed
leadingCoeffNth_mono
Polynomial.degree_le_natDegree
mem_leadingCoeffNth πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
leadingCoeffNth
Polynomial
Polynomial.semiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Polynomial.leadingCoeff
β€”RingHomSurjective.ids
lt_or_eq_of_le
zero_mem
bot_le
Polynomial.leadingCoeff_zero
Polynomial.coeff_eq_zero_of_degree_lt
le_of_eq
Polynomial.leadingCoeff.eq_1
Polynomial.natDegree.eq_1
Nat.cast_withBot
WithBot.unbotD_coe
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Polynomial.natDegree_le_of_degree_le
le_trans
Polynomial.degree_mul_le
add_le_add
WithBot.addLeftMono
WithBot.addRightMono
covariant_swap_add_of_covariant_add
Polynomial.degree_le_natDegree
Polynomial.degree_X_pow_le
Nat.cast_add
le_refl
mul_mem_right
instIsTwoSided
Polynomial.coeff_mul_X_pow
mem_leadingCoeffNth_zero πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
leadingCoeffNth
Polynomial
Polynomial.semiring
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
β€”mem_leadingCoeffNth
Polynomial.leadingCoeff.eq_1
Polynomial.natDegree_le_of_degree_le
Polynomial.eq_C_of_degree_le_zero
Polynomial.degree_C_le
Polynomial.leadingCoeff_C
mem_map_C_iff πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
map
RingHom
RingHom.instFunLike
Polynomial.C
Polynomial.coeff
β€”Submodule.span_induction
Set.mem_image
Polynomial.coeff_C
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Polynomial.coeff_add
add_mem
smul_eq_mul
Polynomial.coeff_mul
Submodule.sum_mem
mul_mem_left
Polynomial.sum_monomial_eq
mul_comm
mem_map_of_mem
mem_ofPolynomial πŸ“–mathematicalβ€”Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
Polynomial.module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
ofPolynomial
Ideal
β€”β€”
polynomial_mem_ideal_of_coeff_mem_ideal πŸ“–β€”Ideal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
comap
Polynomial
RingHom
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
RingHom.instRingHomClass
Polynomial.coeff
β€”β€”RingHom.instRingHomClass
Submodule.sum_mem
mul_mem_right
instIsTwoSided
Polynomial.sum_C_mul_X_pow_eq
polynomial_not_isField πŸ“–mathematicalβ€”IsField
Polynomial
Ring.toSemiring
Polynomial.semiring
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
IsField.mul_inv_cancel
Polynomial.X_ne_zero
right_ne_zero_of_mul_eq_one
Polynomial.nontrivial
Polynomial.degree_lt_degree_mul_X
Polynomial.degree_eq_bot
Nat.WithBot.lt_zero_iff
Polynomial.degree_one
Polynomial.X_mul

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_natDegree_le πŸ“–mathematicaltotalDegree
Polynomial.natDegree
CommSemiring.toSemiring
DFunLike.coe
AlgHom
MvPolynomial
Polynomial
commSemiring
Polynomial.commSemiring
algebra
Algebra.id
Polynomial.algebraOfAlgebra
AlgHom.funLike
aeval
β€”aeval_def
evalβ‚‚.eq_1
LE.le.trans
Polynomial.natDegree_sum_le
Finset.sup_le
Polynomial.natDegree_C_mul_le
Polynomial.natDegree_prod_le
Finset.sum_mul
mul_le_mul'
Nat.instMulLeftMono
covariant_swap_mul_of_covariant_mul
totalDegree.eq_1
Finset.le_sup_of_le
le_rfl
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Polynomial.natDegree_pow_le
instFiniteOfIsEmpty πŸ“–mathematicalβ€”Module.Finite
MvPolynomial
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
commSemiring
module
Semiring.toModule
β€”Module.Finite.equiv
Module.Finite.self
RingHomInvPair.ids
isNoetherianRing πŸ“–mathematicalβ€”IsNoetherianRing
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
commSemiring
β€”nonempty_fintype
isNoetherianRing_of_ringEquiv
isNoetherianRing_fin
isNoetherianRing_fin πŸ“–mathematicalβ€”IsNoetherianRing
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
commSemiring
β€”isNoetherianRing_fin_0
isNoetherianRing_of_ringEquiv
Polynomial.isNoetherianRing
isNoetherianRing_fin_0 πŸ“–mathematicalβ€”IsNoetherianRing
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
commSemiring
β€”isNoetherianRing_of_ringEquiv
Fin.isEmpty'
ker_map πŸ“–mathematicalβ€”RingHom.ker
MvPolynomial
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
RingHom.instRingHomClass
map
Ideal.map
C
β€”Ideal.ext
RingHom.instRingHomClass
mem_map_C_iff
RingHom.mem_ker
ext_iff
coeff_map
ker_mapAlgHom πŸ“–mathematicalβ€”RingHom.ker
MvPolynomial
CommRing.toCommSemiring
AlgHom
CommSemiring.toSemiring
commSemiring
algebra
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mapAlgHom
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”ker_map
map_mvPolynomial_eq_evalβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
evalβ‚‚
RingHom.comp
C
X
β€”nonempty_fintype
as_sum
evalβ‚‚_eq'
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
monomial_eq
Finsupp.prod_pow
RingHom.map_mul
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Finset.prod_congr
RingHom.map_pow
RingHom.comp_apply
mem_ideal_of_coeff_mem_ideal πŸ“–β€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.comap
MvPolynomial
RingHom
commSemiring
RingHom.instFunLike
C
RingHom.instRingHomClass
coeff
β€”β€”RingHom.instRingHomClass
as_sum
mul_one
C_mul_monomial
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
Submodule.sum_mem
mem_map_C_iff πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
Ideal
CommSemiring.toSemiring
commSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
C
coeff
β€”Submodule.span_induction
Set.mem_image
coeff_C
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
coeff_add
Ideal.add_mem
smul_eq_mul
coeff_mul
Submodule.sum_mem
Ideal.mul_mem_left
as_sum
mul_one
C_mul_monomial
Ideal.mem_map_of_mem
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
prime_C_iff πŸ“–mathematicalβ€”Prime
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
C
β€”comap_prime
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
constantCoeff_C
C_0
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
exists_finset_renameβ‚‚
Subtype.val_injective
algHom_C
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
killCompl_rename_app
map_dvd
algebraMap_eq
rename_C
Finite.of_fintype
prime_rename_iff πŸ“–mathematicalβ€”Prime
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
DFunLike.coe
AlgHom
Set
Set.instMembership
CommSemiring.toSemiring
algebra
Algebra.id
AlgHom.funLike
rename
Set.Elem
β€”ringHom_ext
rename_C
iterToSum_C_C
rename_X
iterToSum_C_X
MulEquiv.prime_iff
RingEquivClass.toMulEquivClass
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
prime_C_iff

Polynomial

Definitions

NameCategoryTheorems
degreeLE πŸ“–CompOp
5 mathmath: degreeLT_succ_eq_degreeLE, span_le_degreeLE_of_finite, degreeLE_mono, mem_degreeLE, degreeLE_eq_span_X_pow
degreeLT πŸ“–CompOp
36 mathmath: degreeLT.addLinearEquiv_symm_apply_inr, degreeLT.instFreeSubtypeMemSubmodule, toMatrix_sylvesterMap', degreeLT_mono, degreeLT.basis_val, FirstOrder.Field.lift_genericMonicPoly, degreeLT.addLinearEquiv_castAdd, degreeLT.addLinearEquiv_apply_fst, comap_taylorEquiv_degreeLT, degreeLT.addLinearEquiv_apply_snd, adjSylvester_comp_sylveserMap, degreeLT.instFiniteSubtypeMemSubmodule, det_taylorLinearEquiv_toLinearMap, degreeLT.addLinearEquiv_apply, degreeLT.addLinearEquiv_apply', degreeLT_succ_eq_degreeLE, degreeLT.addLinearEquiv_symm_apply_inl, degreeLT.addLinearEquiv_symm_apply_inr_basis, span_of_finite_le_degreeLT, degreeLT.addLinearEquiv_symm_apply, degreeLT.addLinearEquiv_symm_apply', det_taylorLinearEquiv, degreeLT_eq_span_X_pow, toMatrix_sylvesterMap, sylvesterMap_apply_coe, degreeLT.addLinearEquiv_natAdd, taylorLinearEquiv_symm, degreeLT.addLinearEquiv_symm_apply_inl_basis, taylor_mem_degreeLT, degreeLT.basisProd_natAdd, sylveserMap_comp_adjSylvester, degreeLT.basisProd_castAdd, taylorLinearEquiv_apply_coe, mem_degreeLT, degreeLT.basis_repr, map_taylorEquiv_degreeLT
degreeLTEquiv πŸ“–CompOp
3 mathmath: FirstOrder.Field.lift_genericMonicPoly, eval_eq_sum_degreeLTEquiv, degreeLTEquiv_eq_zero_iff_eq_zero
monicEquivDegreeLT πŸ“–CompOp
1 mathmath: FirstOrder.Field.lift_genericMonicPoly
restriction πŸ“–CompOp
10 mathmath: monic_restriction, evalβ‚‚_restriction, restriction_one, degree_restriction, restriction_zero, map_restriction, coeff_restriction, natDegree_restriction, coeff_restriction', support_restriction

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_prod_mem_ideal_pow_tsub πŸ“–mathematicalIdeal
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
coeff
Finset.sum
Nat.instAddCommMonoid
Finset.prod
Polynomial
CommSemiring.toCommMonoid
commSemiring
β€”IsScalarTower.right
Finset.induction
Finset.sum_empty
Finset.prod_empty
coeff_one
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
Ideal.one_eq_top
Submodule.mem_top
Finset.sum_insert
Finset.prod_insert
coeff_mul
sum_mem
Submodule.addSubmonoidClass
Ideal.pow_le_pow_right
add_tsub_add_le_tsub_add_tsub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsScalarTower.left
pow_add
Ideal.mul_mem_mul
Finset.HasAntidiagonal.mem_antidiagonal
coeff_restriction πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
coeff
Subring.toRing
restriction
β€”finset_sum_coeff
Finset.sum_congr
coeff_monomial
Finset.sum_ite_eq'
coeff_restriction' πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
coeff
Subring.toRing
restriction
β€”coeff_restriction
degreeLE_eq_span_X_pow πŸ“–mathematicalβ€”degreeLE
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Submodule.span
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.coe
Finset
Finset.instSetLike
Finset.image
instDecidableEq
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset.range
β€”le_antisymm
mem_degreeLE
sum_monomial_eq
sum.eq_1
Submodule.sum_mem
WithBot.coe_le_coe
Finset.sup_le_iff
C_mul_X_pow_eq_monomial
C_mul'
Submodule.smul_mem
Submodule.subset_span
Finset.mem_coe
Finset.mem_image
Finset.mem_range
Submodule.span_le
Finset.coe_image
Set.image_subset_iff
LE.le.trans
degree_X_pow_le
degreeLE_mono πŸ“–mathematicalWithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Submodule
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
PartialOrder.toPreorder
Submodule.instPartialOrder
degreeLE
β€”mem_degreeLE
le_trans
degreeLTEquiv_eq_zero_iff_eq_zero πŸ“–mathematicalPolynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
DFunLike.coe
LinearEquiv
RingHom.id
RingHomInvPair.ids
Submodule.addCommMonoid
Pi.addCommMonoid
Submodule.module
Pi.Function.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
degreeLTEquiv
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instZero
β€”RingHomInvPair.ids
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
degreeLT_eq_span_X_pow πŸ“–mathematicalβ€”degreeLT
Submodule.span
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.coe
Finset
Finset.instSetLike
Finset.image
instDecidableEq
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
Finset.range
β€”le_antisymm
mem_degreeLT
sum_monomial_eq
sum.eq_1
Submodule.sum_mem
WithBot.coe_lt_coe
Finset.sup_lt_iff
WithBot.bot_lt_coe
C_mul_X_pow_eq_monomial
C_mul'
Submodule.smul_mem
Submodule.subset_span
Submodule.span_le
Finset.coe_image
Set.image_subset_iff
lt_of_le_of_lt
degree_X_pow_le
Finset.mem_range
degreeLT_mono πŸ“–mathematicalβ€”Submodule
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
degreeLT
β€”mem_degreeLT
lt_of_lt_of_le
WithBot.coe_le_coe
degreeLT_succ_eq_degreeLE πŸ“–mathematicalβ€”degreeLT
degreeLE
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
β€”Submodule.ext
mem_degreeLT
mem_degreeLE
natDegree_lt_iff_degree_lt
natDegree_le_iff_degree_le
degree_restriction πŸ“–mathematicalβ€”degree
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
Subring.toRing
restriction
β€”support_restriction
disjoint_ker_aeval_of_isCoprime πŸ“–mathematicalIsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
Disjoint
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderBot
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
LinearMap
semiring
Module.End.instSemiring
algebraOfAlgebra
Algebra.id
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
aeval
β€”smulCommClass_self
IsScalarTower.left
disjoint_iff_inf_le
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
LinearMap.mem_ker
Submodule.mem_inf
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
add_zero
eval_eq_sum_degreeLTEquiv πŸ“–mathematicalPolynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
eval
Finset.sum
Finset.univ
Fin.fintype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
LinearEquiv
RingHom.id
RingHomInvPair.ids
Submodule.addCommMonoid
Pi.addCommMonoid
Submodule.module
Pi.Function.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
degreeLTEquiv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”RingHomInvPair.ids
eval_eq_sum
sum_fin
MulZeroClass.zero_mul
mem_degreeLT
evalβ‚‚_restriction πŸ“–mathematicalβ€”evalβ‚‚
Ring.toSemiring
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Subring.toRing
RingHom.comp
Semiring.toNonAssocSemiring
Subring.subtype
restriction
β€”evalβ‚‚_eq_sum
Finset.sum_congr
coeff_restriction
support_restriction
exists_degree_le_of_mem_span πŸ“–mathematicalSet.Nonempty
Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
Submodule.span
Set
Set.instMembership
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
β€”not_lt_bot
degree_zero
Mathlib.Tactic.Push.not_and_eq
Submodule.span_le
SetLike.mem_coe
mem_degreeLT
Nat.cast_withBot
lt_of_lt_of_le
degree_le_natDegree
lt_self_iff_false
degree_eq_natDegree
exists_degree_le_of_mem_span_of_finite πŸ“–mathematicalSet.Nonempty
Polynomial
Set
Set.instMembership
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
β€”Set.Finite.exists_maximalFor
instIsTransLe
exists_degree_le_of_mem_span
LE.le.trans
not_lt
not_lt_iff_le_imp_ge
geom_sum_X_comp_X_add_one_eq_sum πŸ“–mathematicalβ€”comp
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
instAdd
instOne
instMul
instNatCast
Nat.choose
β€”ext
zero_comp
Nat.cast_zero
geom_sum_succ'
add_comp
X_pow_comp
coeff_add
coeff_X_add_one_pow
Nat.cast_add
Finset.sum_congr
finset_sum_coeff
coeff_C_mul_X_pow
Finset.sum_eq_single
Nat.choose_eq_zero_of_lt
instCharP πŸ“–mathematicalβ€”CharP
Polynomial
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
β€”map_natCast
RingHom.instRingHomClass
C_0
instExpChar πŸ“–mathematicalβ€”ExpChar
Polynomial
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
semiring
β€”charZero
instCharP
isNoetherianRing πŸ“–mathematicalβ€”IsNoetherianRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semiring
β€”isNoetherianRing_iff
IsNoetherian.wf
WellFounded.min_mem
Ideal.is_fg_degreeLE
le_or_gt
Ideal.leadingCoeffNth_mono
Classical.by_contradiction
WellFounded.not_lt_min
le_of_lt
Submodule.span_induction
Ideal.subset_span
Ideal.zero_mem
Ideal.add_mem
Ideal.mul_mem_left
C_mul'
le_antisymm
Ideal.span_le
Submodule.subset_span
Nat.strong_induction_on
mem_degreeLE
le_trans
degree_le_natDegree
WithBot.coe_le_coe
ext
mul_one
MulZeroClass.mul_zero
Ideal.mem_leadingCoeffNth
leadingCoeff_eq_zero
degree_mul'
leadingCoeff_X_pow
degree_X_pow
degree_eq_natDegree
Nat.cast_add
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
natDegree_le_of_degree_le
leadingCoeff_mul_X_pow
degree_sub_lt
sub_add_cancel
Nat.cast_lt
WithBot.addLeftMono
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Ideal.sub_mem
Ideal.mul_mem_right
Ideal.instIsTwoSided_1
ker_mapRingHom πŸ“–mathematicalβ€”RingHom.ker
Polynomial
CommSemiring.toSemiring
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
RingHom.instRingHomClass
mapRingHom
Ideal.map
C
β€”Ideal.ext
RingHom.instRingHomClass
Ideal.mem_map_C_iff
ext_iff
coeff_map
linearIndependent_powers_iff_aeval πŸ“–mathematicalβ€”LinearIndependent
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Monoid.toNatPow
Module.End.instMonoid
Polynomial
instZero
β€”smulCommClass_self
IsScalarTower.left
linearIndependent_iff
aeval_endomorphism
map_restriction πŸ“–mathematicalβ€”map
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
CommRing.toCommSemiring
SubringClass.toSubsemiringClass
Subring.instSubringClass
algebraMap
Algebra.ofSubring
Algebra.id
restriction
β€”ext
SubringClass.toSubsemiringClass
Subring.instSubringClass
coeff_map
Algebra.algebraMap_ofSubsemiring_apply
coeff_restriction
mem_degreeLE πŸ“–mathematicalβ€”Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLE
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
degree
β€”β€”
mem_degreeLT πŸ“–mathematicalβ€”Polynomial
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
SetLike.instMembership
Submodule.setLike
degreeLT
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
degree
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
β€”iInf_congr_Prop
degree_lt_iff_coeff_zero
monic_geom_sum_X πŸ“–mathematicalβ€”Monic
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Monic.geom_sum
monic_X
natDegree_X
Nat.instZeroLEOneClass
monic_restriction πŸ“–mathematicalβ€”Monic
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
Subring.toRing
restriction
β€”natDegree_restriction
coeff_restriction
SubringClass.toSubsemiringClass
Subring.instSubringClass
OneMemClass.coe_one
Subtype.coe_injective
natDegree_restriction πŸ“–mathematicalβ€”natDegree
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
Subring.toRing
restriction
β€”degree_restriction
not_finite πŸ“–mathematicalβ€”Module.Finite
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
β€”Module.finite_def
Submodule.fg_def
Mathlib.Tactic.Push.not_and_eq
span_le_degreeLE_of_finite
Submodule.mem_top
one_ne_zero
nonpos_iff_eq_zero
Nat.instCanonicallyOrderedAdd
add_le_iff_nonpos_right
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.cast_le
WithBot.addLeftMono
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
degree_X_pow
mem_degreeLE
prime_C_iff πŸ“–mathematicalβ€”Prime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
commSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”comap_prime
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
eval_C
Ideal.span_singleton_prime
C_eq_zero
Set.image_singleton
Ideal.map_span
Ideal.isPrime_map_C_of_isPrime
restriction_one πŸ“–mathematicalβ€”restriction
Polynomial
Ring.toSemiring
instOne
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Subring.toRing
β€”ext
coeff_restriction'
coeff_one
restriction_zero πŸ“–mathematicalβ€”restriction
Polynomial
Ring.toSemiring
instZero
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Subring.toRing
β€”β€”
span_le_degreeLE_of_finite πŸ“–mathematicalβ€”Submodule
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
degreeLE
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
β€”exists_degree_le_of_mem_span_of_finite
mem_degreeLE
LE.le.trans
degree_le_natDegree
Set.not_nonempty_iff_eq_empty
Submodule.span_empty
bot_le
span_of_finite_le_degreeLT πŸ“–mathematicalβ€”Submodule
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
semiring
module
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
degreeLT
β€”span_le_degreeLE_of_finite
degreeLT_succ_eq_degreeLE
sup_aeval_range_eq_top_of_isCoprime πŸ“–mathematicalIsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
Submodule
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
DFunLike.coe
AlgHom
LinearMap
semiring
Module.End.instSemiring
algebraOfAlgebra
Algebra.id
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
aeval
Top.top
Submodule.instTop
β€”RingHomSurjective.ids
smulCommClass_self
IsScalarTower.left
eq_top_iff
Submodule.mem_sup
LinearMap.mem_range
aeval_mul
mul_comm
aeval_add
aeval_one
sup_ker_aeval_eq_ker_aeval_mul_of_coprime πŸ“–mathematicalIsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
Submodule
AddCommGroup.toAddCommMonoid
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
LinearMap
semiring
Module.End.instSemiring
algebraOfAlgebra
Algebra.id
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
aeval
instMul
β€”le_antisymm
smulCommClass_self
IsScalarTower.left
sup_ker_aeval_le_ker_aeval_mul
Submodule.mem_sup
mul_comm
mul_assoc
aeval_mul
Module.End.mul_apply
LinearMap.mem_ker
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
add_comm
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
aeval_one
sup_ker_aeval_le_ker_aeval_mul πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
LinearMap.ker
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
AlgHom
Polynomial
LinearMap
semiring
Module.End.instSemiring
algebraOfAlgebra
Algebra.id
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
aeval
instMul
β€”smulCommClass_self
IsScalarTower.left
Submodule.mem_sup
mul_comm
aeval_mul
Module.End.mul_apply
LinearMap.mem_ker
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
map_add
SemilinearMapClass.toAddHomClass
add_zero
support_restriction πŸ“–mathematicalβ€”support
Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
SetLike.coe
Finset
Finset.instSetLike
coeffs
Ring.toSemiring
Subring.toRing
restriction
β€”Finset.ext
coeff_restriction
NonUnitalSubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
ZeroMemClass.coe_zero
Subtype.coe_injective

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
geom_sum πŸ“–mathematicalPolynomial.Monic
Polynomial.natDegree
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
geom_sum_succ'
add_of_left
pow
lt_of_le_of_lt
Polynomial.degree_sum_le
Finset.sup_lt_iff
bot_lt_iff_ne_bot
Polynomial.degree_eq_bot
ne_zero
Polynomial.degree_eq_natDegree
natDegree_pow
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
nsmul_lt_nsmul_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
geom_sum' πŸ“–mathematicalPolynomial.Monic
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
Finset.sum
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”geom_sum
Polynomial.natDegree_pos_iff_degree_pos

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_C_coeff_notMem πŸ“–mathematicalPolynomial
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
Polynomial.coeff
β€”Not.imp_symm
span_le_of_C_coeff_mem
mem_span_C_coeff
mem_span_C_coeff πŸ“–mathematicalβ€”Polynomial
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
setOf
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
Polynomial.coeff
β€”Polynomial.sum_C_mul_X_pow_eq
Submodule.sum_mem
Submodule.subset_span
Set.mem_setOf_eq
Submodule.smul_mem
Polynomial.monomial_mul_C
one_mul
Polynomial.C_mul_X_pow_eq_monomial
span_le_of_C_coeff_mem πŸ“–mathematicalPolynomial
Ideal
Polynomial.semiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
Polynomial.coeff
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Ideal.span
setOf
β€”Ideal.span_le
Set.range_subset_iff

---

← Back to Index